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Differentiation – An Introduction
In order to investigate a function’s derivative, we should first take a
close look of Linear map.

Definition : A linear map on R is a function given by :

L : R → R, L(x) = αx, α ∈ R

Clearly, such a function has lots of good properties, which made our
discussion becomes easier.

In this perspective, we would like to approximate any functions which
we are interested in by a linear map. And if such linear map exists, we
say this function is differentiable.
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Differentiation – An Introduction

Translating into mathematical language...

Definition : Let Ω ⊆ R be a set and x ∈ intΩ. Moreover, Let
f : Ω → R be a real function. Then we say f is differentiable if there
exists a linear map Lx such that for all sufficiently small h ∈ R,

f(x + h) = f(x) + Lx(h) + o(h) as h → 0

This linear map is unique, if it exists.

We call Lx ”the derivative of f at x”. If f is differentiable at all
points of some open set U ⊆ Ω, we say f is differentiable on U.
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Derivative
Common misunderstandings:

Lx is a number for a fixed x ∈ Ω, because Lx = α.

Lx is not a number, but a linear map, or one can say ”linear
function”, so it essentially is a function. Lx · h = α · h (for some α)
doesn’t mean Lx = α.

To see this, one can consider a function given by

f(x) = 2x

,which doesn’t mean f = 2.

Linear Map
A more general case.
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Derivative
Common misunderstandings:

For f(x) = x4, f′(x) = 4x3, so Lx may not be linear

You are confusing ”derivative at a point” with ”function that gives
derivative”. At certain point x, 4x3 is just a number in R. Using our
notation for Lx(or f ′(x)), we can express Lx as

Lx(·) = 4x3(·)

, the variable of Lx is not x, so Lx is linear for its input (·)

Given a differentiable function f : Ω → R, the function that gives a
derivative can be denoted by L : (Ω → R) → (Ω → R), L(·)(x) = Lx(·).
It is a function that maps function to function.
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Derivative

Common misunderstandings:

The derivative of f at x is a line passing through (x, f(x))

Although it is usually a good idea to sketch something to help you
to understand some mathematical concepts, but you always need to
aware of the essential reason why such a graph make sense.

The derivative of f at x is a function, not a graph. We simply use
the graph to illustrate our function sometimes, in this case(R), it will
be a straight line, but in other case, it can be more complicated.
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Rules of Differentiation

We now assume both f and g are differentiable functions, then:
(f + g)′(x) = f′(x) + g′(x)

(f · g)′(x) = f′(x)g(x) + f(x)g′(x)

(f ◦ g)′(x) = f′(g(x))g′(x)

( f
g)

′(x) = f′(xg(x)−f(x)g′(x))
g2(x)
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Exercise

1. Practical calculation is really important! Please calculate the
derivatives of the following functions.

(2x + 5x2)6

√x
x+1

3
√

3x2+1
x2+1
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2. More general Cases! Please calculate following functions’ derivative.
(Suppose g′ always exists and doesn’t vanish)

i. f(x) = g(x · g(a))
ii. f(x) = g(x + g(x)) + 1

g(x)
iii. f(x) = g(x)(x − a)
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Inverse Function Theorem

Let I be an open interval and let f : I → R be differentiable and
strictly monotonic. Then the inverse map f −1 : f (I ) → I exists and is
differentiable at all points y ∈ f(I ) for which f ′(f −1(y)) ̸= 0.

(f −1)′(y) = 1
f ′(f −1(y))

Demo
Calculate (arctan x)′
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L’Hopital’s Rule

lim
x↘b

f(x)
g(x) = lim

x↘b
f′(x)
g′(x) , if lim

x↘b
f(x)
g(x) =

0
0 or ∞

∞ and lim
x↘b

f′(x)
g′(x) exists.

What is wrong?

lim
x→1

x3 − x − 2
x2 − 3x + 2 = lim

x→1
3x2 − 1
2x − 3 = lim

x→1
6x
2 = 3

Put a gun on your head: do write down the word ”L’Hopital” !
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Application of Differentiation

We list some useful Results and Theorems.
1. If a real function is differentiable at x, then it is continuous at x.

2. Hierarchy of local smoothness.
1 Arbitrary function
2 Function continuous at x
3 Function differentiable at x
4 Function continuously differentiable at x
5 Function twice differentiable at x
6 …
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Application of Differentiation
Result and Theorems.

3. Let f be a function and (a, b) ⊆ dom f and open interval. If
x ∈ (a, b) is a maximum(or minimum) point of f ⊆ (a, b) and if f is
differentiable at x, then f ′(x) = 0.

4. Let f be a function and [a, b] ⊆ dom f. Assume that f is
differentiable on (a, b) and f(a) = f(b). Then there is a number
x ∈ (a, b) such that f ′(x) = 0.
Comment. We need the requirement that f is differentiable
everywhere on (a, b). Otherwise, a counterexample can be:

[a, b] = [0, 2],
{

f(x) = x x ∈ [0, 1]
f(x) = 2 − x x ∈ (1, 2]
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Application of Differentiation
Result and Theorems.

5. Let [a, b] ⊆ dom f be a function that is continuous on [a, b] and
differentiable on (a, b). Then there exists a number x ∈ (a, b) such
that f ′(x) = f(b)−f(a)

b−a .

6. Let f be a real function and x ∈ dom f such that f ′(x) = 0. If
f ′′(x) > 0, then f has a local minimum at x, if f ′′(x) < 0, then f has
a local maximum at x.

Comment
The case in which f ′′(x) = 0 is more complicated, different conditions
may occur.

Example 1: f ′(x) = x2. Example 2: f ′(x) = x3.
As you can see from example 2, f may not even have a local extremum
if f ′′(x) = 0.
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Application of Differentiation

Result and Theorems.
7. Let f be a twice differentiable function on an open set Ω ⊆ R. If f

has a local minimum at some point a ∈ Ω, then f ′′(a) ≥ 0 .
Proof :

Suppose f has a local minimum at a. If f ′′(a) < 0, then f would also
have a local maximum at a. Thus, f would be constant in some interval
containing a. So f ′′(a) = 0. But this contradicts to our assumption.

Comment. An analogous statement is : If f has a local maximum at
some point a ∈ Ω, then f ′′(a) ≤ 0.
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Exercise

3. This exercise aims to show that differentiation can also be used to
prove sequential results. Recall the inequality (see also review 2)

|a + b|n ≤ 2n−1(|a|n + |b|n)

Now try to use differentiable function to prove it.
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Exercise

4. Prove that if a0
1 +

a1
2 + · · ·+ an

n + 1 = 0

Then a0 + a1x + · · ·+ anxn = 0 for some x ∈ [0, 1]

HamHam (UM-SJTU JI) Review V(Slides 267 - 331) November 1, 2021 16 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction Rules of Differentiation Applications Convexity-Concavity Appendix

Exercise

5. Suppose that f satisfies f ′′ + f ′g − f = 0 for some function g. Prove
that if f is 0 at two distinct points, then f is 0 on the interval between
them.
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Convexity and Concavity
For further analysis of functions, we would introduce the concept of
Convexity and Concavity.
The definition of these two concepts are as follows.

Let Ω ⊆ R be any set and I ⊆ Ω an interval. A function f : Ω → R is
called convex on I if for all

x, a, b ∈ I with a < x < b, f(x)− f(a)
x − a ≤ f(b)− f(a)

b − a

A strictly convex function is a function that satisfies

f(x)− f(a)
x − a <

f(b)− f(a)
b − a . (1)

We say a function f is concave if −f is convex. We say a function f is
strictly concave if −f is strictly convex.
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Convexity and Concavity
Comment 1.

We often use ”−”(minus sign) to define a new definition from an
existing one. The benefit is that these two definitions can be strongly
related with each other.

Comment 2.
There is a quick way to memorize it… Concave…
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Convexity and Concavity
Comment 1.

We often use ”−”(minus sign) to define a new definition from an
existing one. The benefit is that these two definitions can be strongly
related with each other.

Comment 2.
There is a quick way to memorize it… Concave…
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Convexity and Concavity

Results/Theorem & Comment

1. Let f : I → R be strictly convex on I and differentiable at a, b ∈ I.
Then:

i For any h > 0(h < 0) such that a + h ∈ I, the graph of f over the
interval (a, a + h) lies below the secant line through the points
(a, f(a)) and (a + h, f(a + h))

ii The graph of f over all I lies above the tangent line through the
point (a, f(a))

iii If a < b, then f ′(a) < f ′(b)

Draw some pictures to visualize these results!
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Convexity and Concavity

Results/Theorem & Comment

2. A function f : I → R(I is an interval) is convex if and only if

∀
t∈(0,1)

∀
x,y∈I

with x < y, f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y)

Draw some pictures to visualize these results!

3. Let I be an interval, f : I → R differentiable and f ′ strictly
increasing. If a, b ∈ I, a < b and f(a) = f(b), then

f(x) < f(a) = f(b) for all x ∈ (a, b)
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Exercise
6. This exercise will show why convexity is useful.

i Let f be a convex function on [a, b]. Prove that

f(
n∑

i=1
λixi) ≤

n∑
i=1

λif(xi), xi ∈ [a, b],
n∑

i=1
λi = 1, λi > 0

This inequality is known as Jensen’s Inequality(for discrete
measure.)

ii Show that
n∏

i=1
aλi

i ≤
n∑

i=1
λiai, ai ≥ 0,

n∑
i=1

λi = 1, λi > 0.

This is the inequality you will encounter in your assignment.
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Exercise

7∗. Let f : [0, 1] → R be a continuous function. Prove that if f satisfies

f(x1 + x2
2 ) ≤ 1

2(f(x1) + f(x2))

, where x1, x2 ≤ [0, 1], then f is convex.
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Exercise

8∗. Let f be a continuous convex real function on [a, b]. Show that f
either has one local minimum or infinitely many local minimums on
[a, b].
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Additional Exercise

9. Suppose f : [0, n], n ∈ N is a continuous function, and is differentiable
on (0, n). Furthermore, assume that

f(0) + f(1) + · · ·+ f(n − 1) = n, f(n) = 1

Show that there must exist c ∈ (0, n) such that f ′(c) = 0.
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Additional Exercise

10∗. In this exercise, we would like to give a deeper investigation of
Lipschitz condition. If a real function T : Ω → R satisfies

|T(x)− T(y)| ≤ k · |x − y|α

for any x, y ∈ Ω, we say T satisfies ”Lipschitz condition of order α”.
1 Show that if α > 0, then T is continuous.
2 Show that if α > 1, then T is a constant function, i.e.,

∃
C∈R

T(x) = C
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About Mid I
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Reference

Exercises from 2019–Vv186 TA-Zhang Leyang.
Exercises from 2020-Vv186 TA-Hu Pingbang.
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End

Thanks!
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