
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Real Func. Limit Continuty Exercises Appendix

Review IV(Slides 170 - 250)
Real Functions

HamHam

University of Michigan-Shanghai Jiao Tong University Joint Institute

October 19, 2021

VV186 - Honors Mathmatics II
HamHam (UM-SJTU JI) Review IV(Slides 170 - 250) October 19, 2021 1 / 24



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Real Func. Limit Continuty Exercises Appendix

Common Types & Manipulating Functions
Common function types (these should be familiar from high school):

Power functions: xn

Polynomials: Combinations of power functions
Rational functions: Quotient of polynomials
Piecewise functions: ”sticking” functions together
Periodic functions: f(x + T) = f(x)

Manipulating functions (also familiar from high school):
f(k · x)
k · f(x)
f(x + t)
f(x) + t
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Addition, Multiplication and Composition

Let f : X1 → Y1, g : X2 → Y2, and let E = X1
∩

X2, then

f + g := f(x) + g(x), x ∈ E

f · g := f(x) · g(x), x ∈ E

f ◦ g : X2 → Y1, x 7→ f(g(x)), if g(x) ∈ Y2 ∩ X1 6= ∅
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Some terms..

Try to remember it...perhaps?
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Limit
Two Definitions:
(1) (Common) Let f be a real- or complex-valued function defined on

a subset Ω ⊂ R and let x0 be an accumulation point of f. Then the
limit of f as x → x0 is equal to L ∈ C, written

lim
x→x0

f(x) = L :⇔ ∃
δ>0

∀
x∈Ω\{x0}

|x − x0| < δ ⇒ |f(x)− L| < ε

(2) (Sequential) Let f be a real- or complex-valued function defined on
a subset Ω ⊂ R and let x0 be an accumulation point of f. Then the
limit of f as x → x0 is equal to εC, written

lim
x→x0

f(x) = L :⇔ ∀
an⊂Ω

an → x0 ⇒ f(an) → L
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Common Results

Let f, g be two real functions with the same domain Ω ⊂ R.
Furthermore, suppose lim

x→x0
f(x) and lim

x→x0
g(x) exists at some point

x0 ∈ Ω. Then:
lim

x→x0
[f(x) + g(x)] = lim

x→x0
f(x) + lim

x→x0
g(x)

lim
x→x0

[f(x) · g(x)] = lim
x→x0

f(x) · lim
x→x0

g(x)

lim
x→x0

[f(x)/g(x)] = lim
x→x0

f(x)/ lim
x→x0

g(x), if lim
x→x0

g(x) 6= 0

(You are encouraged to prove these results, the proof is similar for that
of sequence)
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Landau Symbols
My interpretation:

Big-O : As Large As...
f(x) = O(ϕ(x)), x → ∞ : ∃

C>0
∃

M>L
x > M ⇒ |f(x)| ≤ C|ϕ(x)|

Small-o : To Small so I don’t care at all
f(x) = o(ϕ(x)), x → x0 : ∀

C>0
∃

ε>0
∀

x∈Ω\{x0}
|x−x0| < ε ⇒ |f(x)| < C|ϕ(x)|

But still, definitions are important for proof!

Example
Physics: (1 + x)n ≈ 1 + nx, x << 1
Time Complexity for bubble sort: O(n2)
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Landau Symbols

Some common results(see also in assignments):
O(g(x)) + O(f(x)) = O(|g(x)|+ |f(x)|)
O(f(x))(g(x)) = (f(x)g(x))
O(f(x))o(g(x)) = o(f(x))(g(x))
O(O(f(x))) = O(f(x))
o(O(f(x))) = o(f(x))

Comment:Some of the results will be useful when dealing with
differentiation
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Continuty

Let Ω ⊂ R be any set and f : Ω → R be a function defined on Ω. Let
x ∈ Ω. We say that f is continuous at x0 if lim

x→x0
f(x) = f(x0).

If f is continuous at all points x ∈ U ⊂ R. Then we say f is continuous
at every point of U, or simply, f is continuous on U.

Quick check:
How to prove that a function is continuous?
How to prove that a funtion is continuous at one point x0?

Concepts for continuous extension and one-side continuty....
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Something Strange...

(a) The Devil’s Staircase (b) The Riemann Function
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Results/Theorems for Continuous Real Functions

(1) Let Ω ⊂ R be some set and f : Ω → R be a function that is
continuous at some point x0 ∈ Ω and assume that f(x0) > 0. Then
there exists a δ > 0 such that f(x) > 0 for all
x ∈ (x0 − δ, x0 + δ) ∩ Ω. (Slide 227)

(2) Let a < b and f : [a, b]R be a continuous function with
f(a) < 0 < f(b). Then there exists some x ∈ [a, b] such that
f(x) = 0. (Slide 228)

(3) Let a < b and f : [a, b]R be a continuous function. Then for
y ∈ [min{f(a), f(b)},max{f(a), f(b)}] there exists some x ∈ [a, b] such
that y = f(x). (Slide 230)
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Results/Theorems for Continuous Real Functions

(4) Let f : [a, b] → R be a continuous function with ran f ⊂ [a, b]. Then
f has a fixed point, i.e., there exists some x ∈ [a, b] such that
f(x) = x. (Slide 231)

(5) Let Ω ⊂ R be some set and : Ω → R be a function that is
continuous at some point x0 ∈ Ω. Then there exists a δ > 0 such
that f is bounded above on (x0 − δ, x0 + δ) ∪ Ω. (Slide 233)
Comment: This Lemma mainly deals with the behavior of f locally
(on some neighborhood)

(6) Let a < b and f : [a, b] → R be a continuous function. Then f is
bounded above. (Slide 234)
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Results/Theorems for Continuous Real Functions

(7) Let a < b and f : [a, b] → ∞ be a continuous function. Then there
exists a y ∈ [a, b] such that f(x) ≤ f(y) for all x ∈ [a, b]. (Slide 236)
Comment. This theorem ensures that f takes its maximum and
minimum on [a, b].

(8) Let f : I → R be a continuous function, where I is an interval. Then
f is strictly monotonic if and only if f is bijective. (Slide 240 & 244)

(9) Let f : I → R be a continuous function. Suppose [a, b] ⊂ I, then
f([a, b]) is an interval. (Slide 251)

They are important! Make sure you have time to digest these!
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Uniform continuity

Interpretation: not driving to fast!
Example: f(x) = sin 1

x on the interval (0,1) is not uniformly continuous

Uniform Continuty Theorem:
Let f : I → R be a continuous function. Suppose [a, b] ⊂ I, then f is
uniformly continuous on [a, b]. (Slides 249)
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Exercises

1. Discuss where is the following function continuous, where is it not
continuous. No proof needed.
(i) f(x) =

√
3(1+4x)−1

2 sin x
(ii) f(x) = dxe, x > 0
(Adapted from SJTU Math textbook, P69)

(It’s necessary to being able to investigate concrete functions)
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Exercises

2. Please prove, or disprove by giving counterexamples of the following
statements:
(i) (1 + O(x))2 = 1 + O(x2) as x → 0
(ii) o(x)n = o(xn), n ∈ N∗, as x → 0

What about x → ∞ ? Would the result change?
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Exercises

3. Let f : [0,+∞) → R be a continuous function such that lim
x→∞

f(x)
exists and is finite. Show that f is uniformly continuous on [0,+∞).
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Exercises

4. Let f : [a, b] → R be a continuous function with b > a. Given ε > 0,
show that there is a polygonal function g such that |f(x)− g(x)| < ε for
all x ∈ [a, b].

Note: A polygonal function is a function formed by a finite number of
line segments. Of course, a polygonal function is continuous.

Try to write a complete proof!
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Exercises

5∗. The function f(x) is defined on interval I. Proof that f(x) is
uniformly continuous if and only if: for any sequence x′n, x′′n ⊂ I, if
lim

n→∞
(x′n − x′′n) = 0, then lim

n→∞
(f(x′n)− f(x′′n)) = 0.
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Exercises

6∗.Let f : (0,+∞) → R be a continuous function such that f(x2) = f(x).
Please show that f is a constant function on (0,+∞) , i.e.,

∃M ∈ R,∀x ∈ domf, f(x) = M

(SJTU Math textbook, P70)
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Exercises

7∗. Suppose the right endpoint for an interval I1 is c ∈ I1, the left
endpoint for an interval I2 is also c ∈ I2(I1, I2 can be infinite interval or
just finite). Prove that if f is uniformly continuous on I1 and I2, then f
is uniformly continuous on I = I1 ∪ I2.
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Exercises

8. Let f : Ω → R be a real function that satisfies Lipschitz condition,
that is, there is a constant M > 0 such that for all x and y in the
domain of f, |f(x)− f(y)| ≤ M|x − y|.

(i) Show that f is uniformly continuous
(ii) Now Let Ω =: [a,+∞), where a > 0. Show that f(x)/x is uniformly

continuous
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Intergration Bee!

Horst and My TAs plan to hold 2-nd JI Intergration Bee this semester,
probably in early November. The problems would include:

single variable intergration(you’ll learn this in vv186).
multi variable intergration(e.g. surface intergal, learn in vv285)
ordinary differential equations(learn in vv286).

If you’re interested, feel free to contact us!
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Midterm Reminder
The first midterm exam is scheduled onto next Tuesday, lecture
time.
Big RC and OH will be held on Sunday (time will be announced
later).
Tips for reviewing:

1. Go through the lecture slides. Recite the definitions and theorem
statements. If time permits, review the proofs of theorems and
lemmas.

2. Go through the assignments. Pay attention to the definitions in
them (lim, lim, etc.)

3. Do the sample exams and check the answers.
4. Attend the big RC unless you are very confident.

Remember to sleep well the night before the exam!
Good luck!
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