

Common Types & Manipulating Functions

Common function types (these should be familiar from high school):

Real Func. **Exercises Appendix** Continuty Exercises Appendix Appendix

- Power functions: *x n*
- Polynomials: Combinations of power functions
- Rational functions: Quotient of polynomials
- Piecewise functions: "sticking" functions together
- Periodic functions: $f(x + T) = f(x)$

Manipulating functions (also familiar from high school):

- \bullet *f*($k \cdot x$)
- $k \cdot f(x)$
- $f(x+t)$
- $f(x) + t$

Limit

Two Definitions:

(1) (Common) Let *f* be a real- or complex-valued function defined on a subset $\Omega \subset \mathbb{R}$ and let x_0 be an accumulation point of $f.$ Then the limit of f as $x \to x_0$ is equal to $L \in \mathbb{C}$, written

$$
\lim_{x\to x_0} f(x) = L :\Leftrightarrow \lim_{\delta>0} \frac{\forall}{x \in \Omega \setminus \{x_0\}} |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon
$$

(2) (Sequential) Let *f* be a real- or complex-valued function defined on a subset $\Omega \subset \mathbb{R}$ and let x_0 be an accumulation point of *f*. Then the limit of f as $x \to x_0$ is equal to $\varepsilon \mathbb{C}$, written

$$
\lim_{x\to x_0} f(x) = L \Leftrightarrow \bigvee_{a_n\subset \Omega} a_n \to x_0 \Rightarrow f(a_n) \to L
$$

. . \overline{Q}

Common Results

Let *f*, *g* be two real functions with the same domain $\Omega \subset \mathbb{R}$. Furthermore, suppose $\lim_{x \to x_0} f(x)$ and $\lim_{x \to x_0} g(x)$ exists at some point

*x*⁰ ∈ Ω. Then:

- $\lim_{x \to x_0} [f(x) + g(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$
- $\lim_{x \to x_0} [f(x) \cdot g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$
- $\lim_{x\to x_0} [f(x)/g(x)] = \lim_{x\to x_0} f(x)/\lim_{x\to x_0} g(x), \text{ if } \lim_{x\to x_0} g(x) \neq 0$

Real Func. Limit Continuty Exercises Appendix

(You are encouraged to prove these results, the proof is similar for that of sequence)

 \Box

Landau Symbols

Some common results(see also in assignments):

Real Func. Limit Continuty Exercises Appendix

- $O(g(x)) + O(f(x)) = O(|g(x)| + |f(x)|)$
- $O(f(x))(g(x)) = (f(x)g(x))$
- $O(f(x))o(g(x)) = o(f(x))(g(x))$
- $O(O(f(x))) = O(f(x))$
- o $o(O(f(x))) = o(f(x))$

Comment:Some of the results will be useful when dealing with differentiation

Continuty

Let $\Omega \subset \mathbb{R}$ be any set and $f: \Omega \to \mathbb{R}$ be a function defined on Ω . Let $x \in \Omega$. We say that *f* is continuous at x_0 if $\lim_{x \to x_0} f(x) = f(x_0)$.

Real Func. Limit Continuty Exercises Appendix

If *f* is continuous at all points $x \in U \subset \mathbb{R}$. Then we say *f* is continuous at **every point** of *U*, or simply, *f* is continuous on *U*.

Quick check:

- \bullet How to prove that a function is continuous?
- \bullet How to prove that a funtion is continuous at one point x_0 ?

Concepts for continuous extension and one-side continuty....

. . .

 \overline{Q}

.

 $\overline{\mathcal{L}}$

Results/Theorems for Continuous Real Functions

- œ (1) Let $\Omega \subset \mathbb{R}$ be some set and $f: \Omega \to \mathbb{R}$ be a function that is continuous at some point $x_0 \in \Omega$ and assume that $f(x_0) > 0$. Then there exists a $\delta > 0$ such that $f(x) > 0$ for all *x ∈* (*x*⁰ *− δ, x*⁰ + *δ*) *∩* Ω. (Slide 227)
- (2) Let $a < b$ and $f: [a, b] \mathbb{R}$ be a continuous function with *f*(*a*) < 0 < *f*(*b*). Then there exists some $x \in [a, b]$ such that $f(x) = 0$. (Slide 228)
- (3) Let $a < b$ and $f: [a, b] \mathbb{R}$ be a continuous function. Then for $y \in [min\{f(a), f(b)\}, max\{f(a), f(b)\}]$ there exists some $x \in [a, b]$ such that $y = f(x)$. (Slide 230)

.

Results/Theorems for Continuous Real Functions

- œ (4) Let $f: [a, b] \to \mathbb{R}$ be a continuous function with *ran* $f \subset [a, b]$. Then *f* has a fixed point, i.e., there exists some $x \in [a, b]$ such that $f(x) = x$. (Slide 231)
- (5) Let $\Omega \subset \mathbb{R}$ be some set and $\Omega \to \mathbb{R}$ be a function that is continuous at some point $x_0 \in \Omega$. Then there exists a $\delta > 0$ such that *f* is bounded above on $(x_0 - \delta, x_0 + \delta) \cup \Omega$. (Slide 233) *Comment: This Lemma mainly deals with the behavior of f locally (on some neighborhood)*
- (6) Let $a < b$ and $f: [a, b] \to \mathbb{R}$ be a continuous function. Then *f* is bounded above. (Slide 234)

Results/Theorems for Continuous Real Functions

(7) Let $a < b$ and $f : [a, b] \to \infty$ be a continuous function. Then there exists a $y \in [a, b]$ such that $f(x) \leq f(y)$ for all $x \in [a, b]$. (Slide 236) *Comment. This theorem ensures that f takes its maximum and minimum on* [*a, b*]*.*

Real Func. Limit Continuty Exercises Appendix

- (8) Let $f: I \to \mathbb{R}$ be a continuous function, where *I* is an interval. Then *f* is strictly monotonic if and only if *f* is bijective. (Slide 240 & 244)
- (9) Let $f: I \to \mathbb{R}$ be a continuous function. Suppose [a, b] $\subset I$, then $f([a, b])$ is an interval. (Slide 251)

They are important! Make sure you have time to digest these!

Real Func. Limit Continuty Exercises Appendix Uniform continuity Interpretation: not driving to fast! Example: $f(x) = \sin \frac{1}{x}$ on the interval (0,1) is not uniformly continuous Uniform Continuty Theorem: Let *f* : *I* → ℝ be a continuous function. Suppose $[a, b]$ ⊂ *I*, then *f* is uniformly continuous on [*a, b*]. (Slides 249)

Exercises

1. Discuss where is the following function continuous, where is it not continuous. No proof needed.

Real Func. Limit Continuty Exercises Appendix

- (i) $f(x) =$ *√* 3(1+4*x*)*−*1 2 sin *x*
- (ii) $f(x) = [x], x > 0$

(Adapted from SJTU Math textbook, P69)

(It's necessary to being able to investigate concrete functions)

. .

 $2Q$

Real Func. Limit Continuty Exercises Appendix **Exercises** œ

2. Please prove, or disprove by giving counterexamples of the following statements:

- (i) $(1 + O(x))^2 = 1 + O(x^2)$ as $x \to 0$
- (ii) $o(x)^n = o(x^n)$, $n \in \mathbb{N}^*$, as $x \to 0$

What about $x \to \infty$? Would the result change?

Exercises

4. Let $f: [a, b] \to \mathbb{R}$ be a continuous function with $b > a$. Given $\varepsilon > 0$, show that there is a polygonal function *g* such that $|f(x) - g(x)| < \varepsilon$ for all $x \in [a, b]$.

Note: A polygonal function is a function formed by a finite number of line segments. Of course, a polygonal function is continuous.

 \bullet Try to write a complete proof!

Real Func. Limit Continuty Exercises Appendix **Exercises** œ 8. Let $f: \Omega \to \mathbb{R}$ be a real function that satisfies Lipschitz condition, that is, there is a constant $M > 0$ such that for all x and y in the domain of f , $|f(x) - f(y)| \le M|x - y|$. (i) Show that *f* is uniformly continuous (ii) Now Let $\Omega =: [a, +\infty)$, where $a > 0$. Show that $f(x)/x$ is uniformly continuous

Midterm Reminder

- The first midterm exam is scheduled onto next Tuesday, lecture time.
- Big RC and OH will be held on Sunday (time will be announced later).
- Tips for reviewing:
	- 1. Go through the lecture slides. Recite the definitions and theorem statements. If time permits, review the proofs of theorems and lemmas.
	- 2. Go through the assignments. Pay attention to the definitions in them $(\overline{\lim}, \underline{\lim}, \text{etc.})$
	- 3. Do the sample exams and check the answers.
	- 4. Attend the big RC unless you are very confident.
- Remember to sleep well the night before the exam!
- Good luck!

 \overline{Q}

. . .

 \Box

Real Func. Limit Continuty Exercises Appendix **Reference** Exercises from 2019–Vv186 TA-Zhang Leyang. Exercises from 2020-Vv186 TA-Hu Pingbang. \bullet SJTU Math Textbook. Mathmatical Analysis I. *Department of Mathematics, ECNU,*,4-th version. Beijing: Higher Education Press. 2016.3 print.

. HamHam (UM-SJTU JI) Review IV(Slides 170 - 250) October 19, 2021 24 / 24. . $2Q$