Review IV(Slides 170 - 250) Real Functions

HamHam

University of Michigan-Shanghai Jiao Tong University Joint Institute

October 19, 2021

VV186 - Honor<mark>s Mathmatics-II</mark>

HamHam (UM-SJTU JI)

Real Func.

Common Types & Manipulating Functions

Common function types (these should be familiar from high school):

- Power functions: x^n
- Polynomials: Combinations of power functions
- Rational functions: Quotient of polynomials
- Piecewise functions: "sticking" functions together
- Periodic functions: f(x+T) = f(x)

Manipulating functions (also familiar from high school):

- $f(k \cdot x)$
- \bullet $k \cdot f(x)$
- f(x+t)
- f(x) + t

Real Func.

Addition, Multiplication and Composition

Let
$$f: X_1 \to Y_1, g: X_2 \to Y_2$$
, and let $E = X_1 \cap X_2$, then
$$f + g := f(x) + g(x), x \in E$$

$$f \cdot g := f(x) \cdot g(x), x \in E$$

$$f \circ g: X_2 \to Y_1, x \mapsto f(g(x)), \text{ if } g(x) \in Y_2 \cap X_1 \neq \emptyset$$

Some terms...

Real Func. 000

Try to remember it...perhaps?

Limit

Two Definitions:

(1) (Common) Let f be a real- or complex-valued function defined on a subset $\Omega \subset \mathbb{R}$ and let x_0 be an accumulation point of f. Then the limit of f as $x \to x_0$ is equal to $L \in \mathbb{C}$, written

$$\lim_{x \to x_0} f(x) = L : \Leftrightarrow \exists_{\delta > 0} \forall |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon$$

(2) (Sequential) Let f be a real- or complex-valued function defined on a subset $\Omega \subset \mathbb{R}$ and let x_0 be an accumulation point of f. Then the limit of f as $x \to x_0$ is equal to $\varepsilon \mathbb{C}$, written

$$\lim_{x\to x_0} f(x) = L :\Leftrightarrow \bigvee_{a_n\subset\Omega} a_n\to x_0 \Rightarrow f(a_n)\to L$$

4/24

Common Results

Let f, g be two real functions with the same domain $\Omega \subset \mathbb{R}$. Furthermore, suppose $\lim_{x \to x_0} f(x)$ and $\lim_{x \to x_0} g(x)$ exists at some point $x_0 \in \Omega$. Then:

- $\lim_{x \to x_0} [f(x) + g(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$
- $\bullet \lim_{x \to x_0} [f(x) \cdot g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$
- $\lim_{x \to x_0} [f(x)/g(x)] = \lim_{x \to x_0} f(x)/\lim_{x \to x_0} g(x)$, if $\lim_{x \to x_0} g(x) \neq 0$

(You are encouraged to prove these results, the proof is similar for that of sequence)

5 / 24

Landau Symbols

My interpretation:

• Big-O : As Large As...

$$f(x) = O(\phi(x)), x \to \infty : \exists \exists_{C>0} \exists_{M>L} x > M \Rightarrow |f(x)| \le C|\phi(x)|$$

• Small-o: To Small so I don't care at all

$$f(x) = o(\phi(x)), x \to x_0: \forall \exists_{C > 0} \exists_{x \in \Omega \setminus \{x_0\}} |x - x_0| < \varepsilon \Rightarrow |f(x)| < C|\phi(x)|$$

But still, definitions are important for proof!

Example

- Physics: $(1+x)^n \approx 1 + nx, x << 1$
- Time Complexity for bubble sort: $O(n^2)$

Landau Symbols

Some common results (see also in assignments):

- O(g(x)) + O(f(x)) = O(|g(x)| + |f(x)|)
- O(f(x))(g(x)) = (f(x)g(x))
- O(f(x))o(g(x)) = o(f(x))(g(x))
- O(O(f(x))) = O(f(x))
- o(O(f(x))) = o(f(x))

Comment:Some of the results will be useful when dealing with differentiation

Continuty

Let $\Omega \subset \mathbb{R}$ be any set and $f: \Omega \to \mathbb{R}$ be a function defined on Ω . Let $x \in \Omega$. We say that f is continuous at x_0 if $\lim_{x \to x_0} f(x) = f(x_0)$.

If f is continuous at all points $x \in U \subset \mathbb{R}$. Then we say f is continuous at every point of U, or simply, f is continuous on U.

Quick check:

- How to prove that a function is continuous?
- How to prove that a funtion is continuous at one point x_0 ?

Concepts for continuous extension and one-side continuty....

Something Strange...

流下了定义域内可积,无理点处连续,有 理点处不连续,极限处处为0而处处不可 导的黎曼眼泪

(b) The Riemann Function

Results/Theorems for Continuous Real Functions

- (1) Let $\Omega \subset \mathbb{R}$ be some set and $f: \Omega \to \mathbb{R}$ be a function that is continuous at some point $x_0 \in \Omega$ and assume that $f(x_0) > 0$. Then there exists a $\delta > 0$ such that f(x) > 0 for all $x \in (x_0 \delta, x_0 + \delta) \cap \Omega$. (Slide 227)
- (2) Let a < b and $f: [a, b]\mathbb{R}$ be a continuous function with f(a) < 0 < f(b). Then there exists some $x \in [a, b]$ such that f(x) = 0. (Slide 228)
- (3) Let a < b and $f: [a, b]\mathbb{R}$ be a continuous function. Then for $y \in [\min\{f(a), f(b)\}, \max\{f(a), f(b)\}]$ there exists some $x \in [a, b]$ such that y = f(x). (Slide 230)

Results/Theorems for Continuous Real Functions

- (4) Let $f: [a, b] \to \mathbb{R}$ be a continuous function with $ran\ f \subset [a, b]$. Then f has a fixed point, i.e., there exists some $x \in [a, b]$ such that f(x) = x. (Slide 231)
- (5) Let $\Omega \subset \mathbb{R}$ be some set and $: \Omega \to \mathbb{R}$ be a function that is continuous at some point $x_0 \in \Omega$. Then there exists a $\delta > 0$ such that f is bounded above on $(x_0 \delta, x_0 + \delta) \cup \Omega$. (Slide 233) Comment: This Lemma mainly deals with the behavior of f locally (on some neighborhood)
- (6) Let a < b and $f: [a, b] \to \mathbb{R}$ be a continuous function. Then f is bounded above. (Slide 234)

Results/Theorems for Continuous Real Functions

- (7) Let a < b and $f: [a, b] \to \infty$ be a continuous function. Then there exists a $y \in [a, b]$ such that $f(x) \le f(y)$ for all $x \in [a, b]$. (Slide 236) Comment. This theorem ensures that f takes its maximum and minimum on [a, b].
- (8) Let $f: I \to \mathbb{R}$ be a continuous function, where I is an interval. Then f is strictly monotonic if and only if f is bijective. (Slide 240 & 244)
- (9) Let $f: I \to \mathbb{R}$ be a continuous function. Suppose $[a, b] \subset I$, then f([a, b]) is an interval. (Slide 251)

They are important! Make sure you have time to digest these!

Continuty 000000

Uniform continuity

Interpretation: not driving to fast!

Example: $f(x) = \sin \frac{1}{x}$ on the interval (0,1) is not uniformly continuous

Uniform Continuty Theorem:

Let $f: I \to \mathbb{R}$ be a continuous function. Suppose $[a, b] \subset I$, then f is uniformly continuous on [a, b]. (Slides 249)

1. Discuss where is the following function continuous, where is it not continuous. No proof needed.

(i)
$$f(x) = \frac{\sqrt{3}(1+4x)-1}{2\sin x}$$

(ii)
$$f(x) = \lceil x \rceil, x > 0$$

(Adapted from SJTU Math textbook, P69)

(It's necessary to being able to investigate concrete functions)

- 2. Please prove, or disprove by giving counterexamples of the following statements:
 - (i) $(1 + O(x))^2 = 1 + O(x^2)$ as $x \to 0$
- (ii) $o(x)^n = o(x^n), n \in \mathbb{N}^*$, as $x \to 0$

What about $x \to \infty$? Would the result change?

3. Let $f:[0,+\infty)\to\mathbb{R}$ be a continuous function such that $\lim_{x\to\infty}f(x)$ exists and is finite. Show that f is uniformly continuous on $[0, +\infty)$.

Exercises

4. Let $f: [a, b] \to \mathbb{R}$ be a continuous function with b > a. Given $\varepsilon > 0$, show that there is a polygonal function g such that $|f(x) - g(x)| < \varepsilon$ for all $x \in [a, b]$.

Note: A polygonal function is a function formed by a finite number of line segments. Of course, a polygonal function is continuous.

• Try to write a complete proof!

 5^* . The function f(x) is defined on interval I. Proof that f(x) is uniformly continuous if and only if: for any sequence $x'_n, x''_n \subset I$, if $\lim_{n\to\infty}(x_n'-x_n'')=0, \text{ then } \lim_{n\to\infty}(f(x_n')-f(x_n''))=0.$

 6^* . Let $f:(0,+\infty)\to\mathbb{R}$ be a continuous function such that $f(x^2)=f(x)$. Please show that f is a constant function on $(0, +\infty)$, i.e.,

$$\exists M \in \mathbb{R}, \forall x \in domf, f(x) = M$$

(SJTU Math textbook, P70)

Exercises

7*. Suppose the right endpoint for an interval l_1 is $c \in l_1$, the left endpoint for an interval l_2 is also $c \in l_2(l_1, l_2)$ can be infinite interval or just finite). Prove that if f is uniformly continuous on l_1 and l_2 , then f is uniformly continuous on $I = I_1 \cup I_2$.

- 8. Let $f: \Omega \to \mathbb{R}$ be a real function that satisfies Lipschitz condition, that is, there is a constant M > 0 such that for all x and y in the domain of f, $|f(x) f(y)| \le M|x y|$.
 - (i) Show that f is uniformly continuous
- (ii) Now Let $\Omega =: [a, +\infty)$, where a > 0. Show that f(x)/x is uniformly continuous

Appendix 000

Intergration Bee!

Horst and My TAs plan to hold 2-nd JI Intergration Bee this semester, probably in early November. The problems would include:

- single variable intergration(you'll learn this in vv186).
- multi variable intergration (e.g. surface intergal, learn in vv285)
- ordinary differential equations (learn in vv286).

If you're interested, feel free to contact us!

Appendix 000

Midterm Reminder

- The first midterm exam is scheduled onto next Tuesday, lecture time.
- Big RC and OH will be held on Sunday (time will be announced later).
- Tips for reviewing:
 - 1. Go through the lecture slides. Recite the definitions and theorem statements. If time permits, review the proofs of theorems and lemmas.
 - 2. Go through the assignments. Pay attention to the definitions in them (lim, lim, etc.)
 - 3. Do the sample exams and check the answers.
 - 4. Attend the big RC unless you are very confident.
- Remember to sleep well the night before the exam!
- Good luck!

Appendix 000

Reference

- Exercises from 2019–Vv186 TA-Zhang Leyang.
- Exercises from 2020-Vv186 TA-Hu Pingbang.
- SJTU Math Textbook.
- Mathematical Analysis I. Department of Mathematics, ECNU, 4-th version. Beijing: Higher Education Press. 2016.3 print.

