Part 0-Math Foundation

HamHam

University of Michigan-Shanghai Jiao Tong University Joint Institute

October 24, 2021

VV186 - Honors Mathmatics-II

HamHam (UM-SJTU JI)

Part 0-Math Foundation

October 24, 2021 1 / 13

About Exam

- 30 pts, possibly contain
 - 1. Multiple choice questions (The choices can be all wrong.)
 - 2. Calculation question
 - 3. Proof question
 - Explanation question

- 100 mins (8:00 9:40). Do Wake Up!
- 100/30 = 3.3 mins/pt. Therefore, you probably don't want to spend more than 5 mins on 1 pt.
- Don't panic if you cannot figure out all some specific question. Just skip it and do it later.
- The questions may not be arranged in the order of difficulty.

Checking List

- Statement/Truth Table
- Prove by Contraposition
- Logical/Sets Operation
- Cartesian product/ Ordered pairs
- Properties of Natural/Rational/Complex Numbers
- Concept of Interval/Points/Sets
- Mathematical Induction

Part 0 is **not** the key point of the exam. However, you should still go through these concepts. Though they might not be directly tested, they could occur somewhere in your exam paper.

Truth Table

Exercise 1.2

i) Let a, b be statements. Write out the truth tables to prove de Morgan's rules:

$$\neg (a \land b) \equiv \neg a \lor \neg b, \qquad \neg (a \lor b) \equiv \neg a \land \neg b.$$

(2 Marks)

Notice that the last column of the truth table should be an evaluation on equivalence. For example, for the first question, you should evaluate $\neg(a \land b) \Leftrightarrow \neg a \lor \neg b$. It is supposed to be true for the whole column. Only through this fact can you conclude that $\neg(a \land b) \equiv \neg a \lor \neg b$.

Please distinguish equivalence (\Leftrightarrow) and logical equivalence (\equiv) . The former one is a binary operation, while the later one indicates a relationship between two compound statements. To be more precise, logical equivalence indicates that the equivalence between two compound statements is a tautology.

HamHam (UM-SJTU JI)

Contraposition

The famous **tautology**

$$(A \Rightarrow B) \equiv (\neg B \Rightarrow \neg A)$$

is useful in some situation. If you are asked to prove some statement $A \Rightarrow B$ but you cannot find a simple way, you can try to prove by contraposition.

Let $x \in \mathbb{Z}$. If $x^2 - 6x + 5$ is even, then x is odd.

Let $x \in \mathbb{Z}$. If $x^2 - 6x + 5$ is even, then x is odd.

Proof: Suppose that x is even. Then we want to show that $x^2 - 6x + 5$ is odd. Write x = 2a for some $a \in \mathbb{Z}$, and plug in:

$$x^{2} - 6x + 5 = (2a)^{2} - 6(2a) + 5$$
$$= 4a^{2} - 12a + 5$$
$$= 2(2a^{2} - 6a + 2) + 1$$

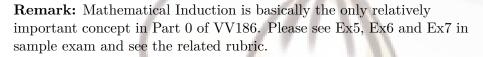
Thus $x^2 - 6x + 5$ is odd.

Mathematical Induction

Often one wants to show that some statement frame A(n) is true for all $n \in \mathbb{N}$ with $n \ge n_0$ for some $n_0 \in \mathbb{N}$. Mathematical induction works by establishing two statements:

- (1) $A(n_0)$ is true.
- (II) A(n+1) is true whenever A(n) is true for $n \ge n_0$, i.e.,

$$\bigvee_{\substack{n \in \mathbb{N} \\ n \geq n_0}} A(n) \Rightarrow A(n+1)$$



Let a_n be the following expression with n nested radicals:

$$a_n = \sqrt{2 + \sqrt{2 + \dots + \sqrt{2 + \sqrt{2}}}}$$

Prove that $a_n = 2 \cos \frac{\pi}{2^{n+1}}$

Proof: Note that a_n can be defined recursively like this: $a_1 = \sqrt{2}$, and $a_{n+1} = \sqrt{a_n + 2}$ for $n \ge 1$. We proceed by induction. For n = 1 we have in fact $a_1 = \sqrt{2}$, and $2 \cdot \cos \frac{\pi}{4} = 2 \cdot \frac{1}{\sqrt{2}} = \sqrt{2}$.

Next, assuming the result is true for some $n \ge 1$, we have

$$a_{n+1} = \sqrt{2 + a_n} = \sqrt{2 + 2\cos\frac{\pi}{2^{n+1}}}$$
$$= \sqrt{2 + 2\cos\frac{\pi}{2^{n+1}}}$$
$$= \sqrt{2 + 2(2\cos^2\frac{\pi}{2^{n+2}} - 1)}$$
$$= \sqrt{4\cos^2\frac{\pi}{2^{n+2}}} = 2\cos\frac{\pi}{2^{n+2}}$$

By induction, we conclude that $a_n = 2 \cos \frac{\pi}{2^{n+1}}$.

а

HamHam (UM-SJTU JI)

Complex Numbers

Given
$$z_1 = (a_1, b_1)$$
 and $z_2 = (a_2, b_2)$
• $z_1 + z_2 = (a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1, b_2)$
• $z_1 \cdot z_2 = (a_1, b_1) \cdot (a_2, b_2) = (a_1a_2 - b_1b_2, a_1b_2 - a_2b_1)$
• $c \cdot z_1 = c(a_1, b_2) = (ca_1, cb_1), c \in \mathbb{R}$
• $\bar{z}_1 = (a_1, -b_1)$
• $|z_1|^2 = a_1^2 + b_1^2 = z_1\bar{z}_1$
• Re $z_1 = \frac{z_1 + \bar{z}_1}{2}$
• $(\text{Im } z_1)i = \frac{z_1 - \bar{z}_1}{2}$
• $2(|z_1|^2 + |z_2|^2) = |z_1 + z_2|^2 + |z_1 - z_2|^2$
• $|z_1 + z_2| \le |z_1| + |z_2|$ (Triangle Inequality)

Note that the ordering relation is not defined in $\mathbb{C}!$

Concept of Interval/Points/Sets

- Interior/Exterior/Boundary point
- Accumalation point
- Open/Closed Set
- Open/Closed/Half-open interval
- Closure $(\overline{I} = \partial I \cup I)$
- bounded/unbounded
- \max/\min
- $\bullet \ {\rm sup}/{\rm inf}$
- $\bullet~ \limsup / \lim \ \inf$
- open ball $(B_{\varepsilon}(a))$

Example

Please identify the interior, exterior, and boundary points of the set

$$\{\frac{1}{z}: z \in \mathbb{Z} \setminus \{0\}\} \cup (\bigcap_{j=1}^{\infty} (-2 - \frac{1}{j}, -1 + \frac{1}{j}))$$

Answer:

- Any $x \in (-2, -1)$ is an interior point.
- Any point $x \notin \{0\} \cup \{\frac{1}{z} : z \in \mathbb{Z} \setminus \{0\}\} \cup [-2, -1]$ is an exterior point.
- Any $x \in \{0\} \cup \{-1\} \cup \{-2\} \cup \{\frac{1}{z} : z \in \mathbb{Z} \setminus \{0\}\}$ is a boundary point.

End

Good Luck!

HamHam (UM-SJTU JI)

Part 0-Math Foundation

October 24, 2021 12 / 13

Reference

- Exercises from 2020–Vv186 TA-Zhang Xingjian.
- Concepts from my RC1-RC2.