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About Exam

30 pts, possibly contain
1. Multiple choice questions (The choices can be all wrong.)
2. Calculation question
3. Proof question
4. Explanation question
5. ...

100 mins (8:00 - 9:40). Do Wake Up!
100/30 = 3.3 mins/pt. Therefore, you probably don’t want to
spend more than 5 mins on 1 pt.
Don’t panic if you cannot figure out all some specific question.
Just skip it and do it later.
The questions may not be arranged in the order of difficulty.
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Checking List

Statement/Truth Table
Prove by Contraposition
Logical/Sets Operation
Cartesian product/ Ordered pairs
Properties of Natural/Rational/Complex Numbers
Concept of Interval/Points/Sets
Mathematical Induction

Part 0 is not the key point of the exam. However, you should still
go through these concepts. Though they might not be directly tested,
they could occur somewhere in your exam paper.
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Truth Table

Notice that the last column of the truth table should be an
evaluation on equivalence. For example, for the first question, you
should evaluate ¬(a ∧ b) ⇔ ¬a ∨ ¬b. It is supposed to be true for the
whole column. Only through this fact can you conclude that
¬(a ∧ b) ≡ ¬a ∨ ¬b.

Please distinguish equivalence (⇔) and logical equivalence (≡). The
former one is a binary operation, while the later one indicates a
relationship between two compound statements. To be more precise,
logical equivalence indicates that the equivalence between two
compound statements is a tautology.
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Contraposition

The famous tautology

(A ⇒ B) ≡ (¬B ⇒ ¬A)

is useful in some situation. If you are asked to prove some statement
A ⇒ B but you cannot find a simple way, you can try to prove by
contraposition.
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Exercise

Let x ∈ Z. If x2 − 6x + 5 is even, then x is odd.

Proof: Suppose that x is even. Then we want to show that x2 − 6x + 5
is odd. Write x = 2a for some a ∈ Z, and plug in:

x2 − 6x + 5 = (2a)2 − 6(2a) + 5
= 4a2 − 12a + 5
= 2(2a2 − 6a + 2) + 1

Thus x2 − 6x + 5 is odd.
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Mathematical Induction

Often one wants to show that some statement frame A(n) is true for
all n ∈ N with n ≥ n0 for some n0 ∈ N. Mathematical induction works
by establishing two statements:
(I) A(n0) is true.

(II) A(n + 1) is true whenever A(n) is true for n ≥ n0, i.e.,

∀
n∈N
n≥n0

A(n) ⇒ A(n + 1)

Remark: Mathematical Induction is basically the only relatively
important concept in Part 0 of VV186. Please see Ex5, Ex6 and Ex7 in
sample exam and see the related rubric.
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Exercise

Let an be the following expression with n nested radicals:

an =

√
2 +

√
2 + · · ·+

√
2 +

√
2

Prove that an = 2 cos π
2n+1
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Exercise
Proof: Note that an can be defined recursively like this: a1 =

√
2, and

an+1 =
√

an + 2 for n ≥ 1. We proceed by induction. For n = 1 we have
in fact a1 =

√
2, and 2 · cos π

4 = 2 · 1√
2 =

√
2.

Next, assuming the result is true for some n ≥ 1, we have

an+1 =
√

2 + an =

√
2 + 2 cos π

2n+1

=

√
2 + 2 cos 2 π

2n+1

=

√
2 + 2(2 cos2 π

2n+2 − 1)

=

√
4 cos2 π

2n+2 = 2 cos π

2n+2

By induction, we conclude that an = 2 cos π
2n+1 .
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Complex Numbers

Given z1 = (a1, b1) and z2 = (a2, b2)

z1 + z2 = (a1, b1) + (a2, b2) = (a1 + a2, b1, b2)

z1 · z2 = (a1, b1) · (a2, b2) = (a1a2 − b1b2, a1b2 − a2b1)

c · z1 = c(a1, b2) = (ca1, cb1), c ∈ R
z̄1 = (a1,−b1)

|z1|2 = a2
1 + b2

1 = z1z̄1

Re z1 = z1+z̄1
2

(Im z1)i = z1−z̄1
2

2(|z1|2 + |z2|2) = |z1 + z2|2 + |z1 − z2|2

|z1 + z2| ≤ |z1|+ |z2| (Triangle Inequality)
Note that the ordering relation is not defined in C!
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Concept of Interval/Points/Sets

Interior/Exterior/Boundary point
Accumalation point
Open/Closed Set
Open/Closed/Half-open interval
Closure (̄I = ∂I ∪ I)
bounded/unbounded
max/min
sup/inf
lim sup/lim inf
open ball (Bε(a))
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Example

Please identify the interior, exterior, and boundary points of the set

{1
z : z ∈ Z\{0}} ∪ (

∞∩
j=1

(−2 − 1
j ,−1 +

1
j ))

Answer:
Any x ∈ (−2,−1) is an interior point.
Any point x /∈ {0} ∪ {1

z : z ∈ Z\{0}} ∪ [−2,−1] is an exterior point.
Any x ∈ {0} ∪ {−1} ∪ {−2} ∪ {1

z : z ∈ Z\{0}} is a boundary point.
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End

Good Luck!
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Exercises from 2020–Vv186 TA-Zhang Xingjian.
Concepts from my RC1-RC2.
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