
VG101 Final RC Part II
ADT

An ADT provides an abstract description of values and operations.

The definition of an ADT must combine both some notion of what values that type represents,
and what operations on values it supports.

More concepts of ADT will appear in VE280!!!

In c++, we implement an ADT within class . Its behavior, what can be done with it, its methods .

The data it contains, what it knows, its attributes .

Visibility

Private: can only be accessed by member functions within the class
Public: Users can only access public members
Protected: Can not be accessed by user. Can be accessed by subclass

Declarations in the header file:

Quick Check

Methods should always be public
Attributes should always be private/protected

Constructor and Destructor

You may understand the constructor as the recipe to build an instance of such data type. The
destructor would be called when the life scope of the instance ends.

class Circle {

/* user methods (and attributes)*/

 public:

 Circle();

 Circle(float r);

 ~Circle();

 void move(float dx, float dy);

 void zoom(float scale);

 float area();

/* implementation attributes (and methods) */

 private:

 float x, y, r;

};

Circle::Circle() {

 x=y=0.0; r=1.0;

}

Circle::Circle(float radius)

{

 x=y=0.0; r=radius;

}

af://n0
af://n2
af://n7
af://n17
af://n23

specifier private protected public

self Yes Yes Yes

derived classes No Yes Yes

outsiders No No Yes

Inheritance \ Member private protected public

private inaccessible private private

Extra notes

If there is dynamic memory allocation inside the class, an explicit destructor is needed. Example:
Lab 10 ex3.

Inheritance

When a class (called derived, child class or subclass) inherits from another class (base, parent
class, or superclass), the derived class is automatically populated with almost everything from the
base class. This include functions (methods), attributes (constants and variables) and types etc.

The basic syntax is

Access Specifier

There are three choices of access specifiers, namely private, public and protected.

The accessibility of members are as follows:

When declaring inheritance with access specifiers, the accessibility of (members that get inherited
from the parent class) in the derived classes are as follows:

Circle::~Circle() {

 cout << "Circle destructed" << endl;

}

int main () {

 float s1;

 Circle circ1;

 Circle circ2((float)3.1);

 circ1.move(12,0);

 s1=circ1.area();

 circ1.zoom(2.5);

 cout << "area: " << s1 << endl;

}

class Derived : /* access */ Base1, Base2, ... {

private:

/* Contents of class Derived */

public:

/* Contents of class Derived */

};

af://n26
af://n28
af://n32

Inheritance \ Member private protected public

protected inaccessible protected protected

public inaccessible protected public

Constructors and Destructors in Inheritance

What would be the order of constructor and destructor call in an inheritance system? A short
answer to remember would be:

Example:

class Parent {

public:

Parent()

{ cout << "Parent::Constructor\n"; }

~Parent()

{ cout << "Parent::Destructor\n"; }

};

class Child : public Parent {

public:

Child()

{ cout << "Child::Constructor\n"; }

~Child()

{ cout << "Child::Destructor\n"; }

};

class GrandChild : public Child {

public:

GrandChild()

{ cout << "GrandChild::Constructor\n"; }

~GrandChild()

af://n78

Cows

Sick Cows Mad Cows

Sick & Mad Cows

Cows Cows

Sick Cows Mad Cows

Sick & Mad Cows

Output:

Diamond Problem

Human Perspective

Computer Perspective

{ cout << "GrandChild::Destructor\n"; }

};

int main() {

 GrandChild gc;

}

Parent::Constructor

Child::Constructor

GrandChild::Constructor

GrandChild::Destructor

Child::Destructor

Parent::Destructor

af://n85
af://n86
af://n88

Solution

Polymorphism

virtual keyword: A way to tell C++ compiler to choose the actual type at run-time before

execution.

Substitution Principle

If is a subtype of or is a supertype of , written , then for any instance where an
object of type is expected, an object of type can be supplied without changing the
correctness of the original computation.

class Bus {

public:

 Bus(int passengerNumMax);

 virtual void print();

 int getPassengerNum() { return passengerNum; }

 void passengerGetOn(int num);

 void passengerGetOff(int num);

private:

 int passengerNum;

 int passengerNumMax;

};

class DoubleDeckerBus : public Bus {

public:

 void print(); // different behaviors here

 // other methods omited here

}

Bus a;

a.print();// One floor

DoubleDeckerBus b;

b.print();// Two floors

Bus * c = & b;

c->print();// Two floors

Bus & d = b;

d.print();// Two floors

af://n90
af://n92
af://n95

Exercise:

Is there a memory leak?

Is there a memory leak?

#include <iostream>

using namespace std;

class base {

public:

 base() { cout<<"Constructing base \n"; }

 virtual ~base() { cout<<"Destructing base \n"; }

};

class derived: public base {

public:

 derived() {

 cout<<"Constructing derived \n";

 val2 = new int (20);

 }

 ~derived(){

 cout<<"Destructing derived \n";

 delete val2;

 }

private:

 int val1 = 10;

 int * val2 = nullptr;

};

int main(){

 derived *d = new derived();

 base *b = d;

 delete b;

 return 0;

}

class Base {

protected:

 int *p;

public:

 Base() : p(new int(10)) {}

 ~Base() {delete p;}

};

class Derived : public Base {

 int *q;

public:

 Derived() : Base(), q(new int(20)) {}

 ~Derived() {delete q;}

};

// Leak!

void foo() {

Base* ptrA = new Derived;

delete ptrA;

}

// Safe

void bar() {

af://n98

Tips

To help you see if you are leaking memory, you may wish to call valgrind, which can tell whether
you have any memory leaks. The command to check memory leak is:

You should replace with the actual command you use to issue the program under testing. For
example, if you want to check whether running program main ,

You may install valgrind by

Good Luck for Your Exam!

That's it! Thank you for your support for the whole semester!

Reference
Charlemagne, Manuel. VG101 FA2020 Lecture Slides.
Zhu, Yifei. VG101 SU2022 Lecture Slides.
Zhou, Shuyi. VG101 FA2020 Final RC.
Ma, Pingchuan. VE280 FA2021 Final RC.

Derived* ptrB = new Derived;

delete ptrB;

}

int main(){

 foo();

 bar();

 return 0;

}

valgrind --leak-check=full <command>

valgrind --leak-check=full ./main

sudo apt-get install valgrind

af://n103
af://n110
af://n112

	VG101 Final RC Part II
	ADT
	Visibility
	Quick Check

	Constructor and Destructor
	Extra notes

	Inheritance
	Access Specifier
	Constructors and Destructors in Inheritance
	Diamond Problem
	Human Perspective
	Computer Perspective
	Solution

	Polymorphism
	Substitution Principle
	Exercise:
	Tips

	Good Luck for Your Exam!

	Reference

