Computation •000

Recitation Class I

Matlab Basic

HamHam

University of Michigan-Shanghai Jiao Tong University Joint Institute

May 23, 2022

RC Policy

Computation •000

- Content
 - Review
 - Exercises
 - Comments
- Tips
 - Open your matlab and practice.
 - Preview the exercises on RC slides.
- Time
 - Probably once every two weeks
 - ▶ Next time would be big RC for Mid1.
- Feel free to post feedbaks!

Number Base Conversion

Make sure you understand:

- From base b into decimal
 - evaluate the polynomial
- From decimal into base b
 - \triangleright repeateadly divide n by b
- From base b to base b^a
 - group numbers into chunks of a elements
- Represent negative numbers:
 - signed magnitude
 - two's complement code

ASCII code

- Here is the introduction for ASCII on wikipedia.
- 7bits, 128 characters
- Idea: encoding

	Characters	ASCII code	Hexadecimal
	space	32	20
	0	48	30
5	A	65	41
Ĭ	a	97	61

Table: ASCII for common characters

Algorithm

Computation 0000

Properties

- Output.
- **Definiteness.** The steps of the algorithm are defined precisely.
- Correctness. For each input, the algorithm produces the correct output values.
- Finiteness. The algorithm must end at some point.
- Effectiveness.
- Generality.

Question

Is there any algorithm without input? without output?

Matlab Syntex Tips

; : suppress the output of this line.

%: annotation.

, : two statements at the same line.

...: one statement in more than one lines

Notice

A valid ... is shown in blue color, otherwise you may need to add a whitespace to separate the code and ...

Datatype and Operations

- Numeric: 0, 0.132, 1e-10, pi
 - ▶ Pay attention to the priority.
 - \blacktriangleright + * / \ $^{\sim}$ mod(x,y)
 - ▶ Default type: double
- Numeric Matrix: [0,1,2]
 - ▶ + * .* / ./ ^ .^
 - ► combine, indexing
- Char: 'a'
 - ► ischar()
- Char array: 'abcdefg'
 (Chars exist individually and form a group.)
 - indexing
 - combine: [a,b]
- String: "abcdefg" (Chars as a whole)

6/25

Variable

Naming

- start with a letter.
- underline is allowed, no other special characters.
- case sensitive.
- no more than 31 characters.

Recommendation:

- Hungarian Notation
 - ▶ m count,lnum
- Lower Camel Case: variable name
 - ▶ ballRadius, intervalLength
- Upper Camel Case: class name, function name
 - ► Rectangle, GetColor

Assignment Operator

- Assignment Operator '='
 - calculate the right hand side.
 - let the left hand side equals to right hand side.

```
a = 1; a = a+1;
```

- Logical Operator '=='
 - Compare whether two value are equal

```
if a = 1

disp('Yes');
end
```


8/25

Exercise 1 - Swap two Variables

The user inputs the value of x and y , please write a program to exchange this two variables.

Sample input

12 34

Sample output

34

12

Array Creation

- write by hand.
- start:step:end
- linspace(start,end,numInTotal) (linear)
- logspace(start,end,numInTotal) (log)
- zeros(rowNum,columnNum)
- ones(rowNum,columnNum)
- rand(rowNum,columnNum)
- magic(size)
- eye(size)

Question

How to create a 3*3 matrix, all the elements are 2?

Array Opeartion

- element-wise: + .* ./ .^
- matrix operation: * / ^ inv rref
- with a number: $+ * / .^{\hat{}}$
- functions: sin(A), plot(A,B), sum(A), max(A),...
- logic: A>0

Array Concatenation

- left-right connection: [A,B] or [A B]
- upper-lower connection: [A;B]

Notice

Pay attention to the size (in other words, $n \times m$) of the input matrix

Array Access

- A(1): column-major label each elements
- \bullet A(1,2): (row,column)
- A(B,C)
 - ▶ the range of row is the elements(column-major) in B;
 - ▶ the range of column is the elements(column-major) in C.

Array 0000000

- combine all the elements we get.
- Example: A([2,1],[1,3]);
- A(B,:), A(:,B)
 - similar to previews one, ':' represents 'all'
 - \triangleright example: A([2,1],:)
- A(LOGIC)
 - ► LOGIC is a logical matrix
 - extract the component where LOGIC is 1

Array Assign

Two steps

- find the elements that you want to assign
 - use Array Access technique
- assign the value
 - ► Assign a matrix
 - Assign a number

Exercise 2 - Binary to Decimal

The user inputs a matrix, which represents a binary number. For example, [1,0,1,1,1] represents (10111)₂. Please convert it to decimal and print the result.

Sample input

 $[1\ 0\ 1\ 1\ 1]$

Sample output

23

15 / 25

Exercise 3 - Explain

```
A = [2 7 9 7 ; 3 1 5 6 ; 8 1 2 5]
   A(:,[1 \ 4]), pause
   A([2 3],[3 1]), pause
   reshape(A,2,6), pause
   A(:), pause
   flipud(A), pause
   fliplr(A), pause
   [A A(:,end)], pause
   A(1:3,:), pause
   [A ; A(1:2,:)], pause
10
   sum(A), pause
11
   sum(A'), pause
12
   sum(A,2), pause
13
   [[A; sum(A)] [sum(A,2); sum(A(:))]], pause
14
```

HamHam (UM-SJTU JI)

15

If & Switch Statement

Syntex:

```
if (condition1)
      statement1
   elseif (condition2)
      statement2
  else
5
      statement3
  end
```

Syntex:

```
switch (expression)
      case value1
           statement1
3
      case value2
4
           statement2
      otherwise
           statement3
7
  end
8
```

Usage

if: Deal with special cases or boundary conditions. switch: Classify objects to large number of categories.

Exercise 4 - Leap Year

Judge whether a year inputed by the user is a leap year or not. Ouput "Yes" or "No".

Sample input

2022

Sample output

No

For & While Statement

Syntex:

```
for variable = list
   statement
```

Syntex:

```
while (condition)
      statement
  end
3
```

Usage

end

for: Do the work for a given times, get the final result step by step. while: Keep doing some work until some condition is reached.

ttlab Basic Array **Branch & Control**000 000000 **000●000**

Loop Control

break can jump out of one layer of the loop

continue

continue will skip the sentence behind it and start a new round of loop. Sometimes it works like an else branch.

20 / 25

The user inputs a matrix, which represents a binary number. For example, [1,0,1,1,1] represents (10111)₂. Please convert it to decimal and print the result. Now, use a for loop instead.

Question

Which one is faster? For loop or matrix operations?

Let's do an experiment!

```
a=zeros(1,100000000); i=1;
1
   tic; while i \le 1000000000; a(i) = 2*(i-1); i = i+1; end; toc;
   a=zeros(1,100000000);
   tic: for i=1:1000000000; a(i)=2*(i-1); end: toc:
   tic; [0:2:199999999]; toc;
```

Use vectorization if possible!

- Recommended open course: CS229

https://www.bilibili.com/video/BV164411b7dx?p=82

Exercise 6 - Greatest Common Divisor

Given two positive number, print the greatest common divider.

Algorithm:

- find the remainder of a/b
- assign b to a
- assign r to b
- keep doing it until b = 0, then a is the result

23 / 25

Reference

- Charlemagne, Manuel. VG101-2020FA Lecture Slides.
- Zhu, Yifei. VG101-2022SU Lecture Slides.
- Zhu, Kan. VG101-2021SU-RC1 Slides
- Zhu, Kan. VG101-2021SU-RC2 Slides
- Zhou, Shuyi. VG101-2020FA-RC2 Slides.

ic Array Branch & Con

End ○•