
ECE4721 SU 24 Lab3: SQLite
Contributor: ECE4721J 24SU Teaching Group

ECE4721 SU 24 Lab3: SQLite
Target of the Lab Session
Basic knowledge on Sql and sqlite.

Intro to sql
Relational Database
Keys, linking

sql in ece472:
Loading a table
Basic Sql Syntax

SELECT ... FROM ...
ORDER BY

Operators
Join
Union
Intersect

Workflow of Query using sql
Lab Submissions
Reference

Target of the Lab Session

In this lab, we will:

Get some basic knowledge on Sql and sqlite;
See how to integrate Sql with other common programming languages such as Java and
Python.
Practice through analyzing a famous dataset.

Basic knowledge on Sql and sqlite.

Intro to sql

From Wikipedia:

SQL is designed for a specific purpose: to query data contained in a relational database.

Relational Database

What is a relational database?

af://n865
af://n870
af://n880
af://n881
af://n885

Takeaway:

relational database organizes data into tables that can be linked.

Keys, linking

What does linking mean?

Takeaways:

Key is something you use to get a value. (We often say key-value pair).

For example, if you want to get grades of students, you access grade column and now grade is

the key.

Two kinds of keys: primary key and foreign key.

Each table typically has one primary key. The value associated with this key is different for each
row in this table.

For example: in a grade file, the student_ID can be the primary key.

Note. One key does not have to be one attribute (name of one column), it can be combinations
of attributes.

af://n891

sql in ece472:

lab3, drill, project

Loading a table

The data we get are often .csv files, to use sqlite we need to turn it to tables, the data format

that sql can recognize.

To create a table from a .csv file,

this will initialize the database and then quit; you can further preprocess the data e.g. remove the
header.

then, run sqlite3 var/imdb.sqlite3 and:

Create a table which defines the framework you want:

mkdir var

sqlite3 var/imdb.sqlite3

.quit

create table name

(

 nconst varchar(10) not null,

 primaryName text not null,

 birthYear varchar(4) not null,

 deathYear varchar(4) not null,

 primaryProfession text not null,

 knownForTitles text not null,

 primary key(nconst)

);

af://n902
af://n905

Then, import the data file into it:

This imports the data name.basics.tsv as a table name .

Basic Sql Syntax

SELECT ... FROM ...

OK it seems to be a little hard to understand, here is a simpler way to understand:

Still a little bit weird? Let's take an example.

[credit: EECS 484 24WN, University of Michigan]

What I want? (SELECT) Sailor's name!

What source(datasets) I will look at?(FROM) Sailors S, Reserves R

What requirements should be satisfied? (WHERE) S.sid = R.sid AND R.bid = 103

S,R are called range variables.

.separator "\t"

.import name.basics.tsv name

SELECT [DISTINCT]

attr-list

FROM relation-list

WHERE qualification

SELECT [I want it to be unique]

what I want

FROM the target dataset

WHERE I need them to satisfy these requirements

af://n919
af://n921

ORDER BY

It is common that we want to order the results we quiried:

Attribute(s) in ORDER BY clause (must be) in SELECT list

Operators

After learning about the basic sql common commands, we may want to see some powerful
operators.

Join

Consider the code

It can be regarded as an Inner Join:

Inner join: compares the values in the columns being joined (the inner part of Venn diagram)

There are also other kinds of join. e.g. full outer join.

Union

Consider the following problem:

Find names of sailors who have reserved a red or a green boat.

Understanding the code:

why we need

SELECT S.sname, S.age

FROM Sailors S

ORDER BY S.age DESC

SELECT S.sname

FROM Sailors S, Reserves R

WHERE S.sid = R.sid AND R.bid = 103;

SELECT S.sname

FROM Sailors S INNER JOIN Reserves R ON S.sid = R.sid

WHERE R.bid = 103

SELECT DISTINCT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid

 AND (B.color = 'red' OR B.color = 'green');

af://n936
af://n941
af://n944
af://n953

It is like 2 steps of retrieval: which sailors reserved boat? which boat do the reservation reserves?

that may give you some ideas on what 'relative'/'linking' means.

Rewriting it using UNION :

Intersect

Let's modifty the above problem a little bit:

Find names of sailors who have reserved a red and a green boat.

It seems that intersect is the dual of union, so one may want to write:

looking back on this schema, do you see any problem?

What if two sailors coincidently have the same name? and one of them reserves red boat,
and the other reserves green one?

This name will be selected! That is not what we want.

S.sid = R.sid AND R.bid = B.bid

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = 'red' UNION

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid and R.bid = B.bid AND B.color = 'green';

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = 'red’

INTERSECT

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid and R.bid = B.bid AND B.color = 'green';

af://n966

What is the underlying reason for this problem? sname might be NOT unique!

Takeaway : Intersection on non-unique key is dangerous.

How to solve the problem? Intersection on unique key!

What is the key that must be unique? Primary Key.

So the fixed code is as follows:

Or, without VIEW :

One lab's time is not enough to cover all the common sql commands e.g. COUNT , GROUP BY ,
EXCEPT , but it should provide a good start so that you are more prepared to learn these by

yourselves.

As you may also see, the sql code becomes more and more complicated. To finish more complex
tasks, we may want to integrate sql with other languages, such as Java and Python.

CREATE VIEW RedGreenSailors AS

SELECT S.sid

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = 'red'

INTERSECT

SELECT S.sid

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid and R.bid = B.bid AND B.color = 'green';

SELECT S.sname

FROM Sailors S, RedGreenSailors R

WHERE S.sid = R.sid;

DROP VIEW RedGreenSailors;

SELECT S.sname

FROM Sailors S,

(SELECT S.sid

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = 'red'

INTERSECT

SELECT S.sid

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid and R.bid = B.bid AND B.color = 'green')

RedGreenSailors

WHERE S.sid = RedGreenSailors.sid;

Workflow of Query using sql

Below are some personal advice:

1. Before you interact with a dataset, it is recommanded to look first at its documentation:

 for IMDb: https://developer.imdb.com/non-commercial-datasets/

2. After you do the query. Think: Is the returning result valid? Validity not only relies on how it
aligns with your program/expecation, but also common sense.

Lab Submissions

Please finish the ex3 and ex5 as depicted in the manual. Please hand in a pdf report (e.g.
exported by markdown), together with your codes onto canvas. For the advanced queries, your
implementation can either be in python or in java. Lab 3 is an individual lab.

Reference

[1] Atul Prakash and Lin Ma, EECS 484 WN2024, University of Michigan - Ann Arbor

[2] Kaiwen Zhang etc. VE482 Lab4 22FA.

af://n988
https://developer.imdb.com/non-commercial-datasets/
af://n997
af://n999

	ECE4721 SU 24 Lab3: SQLite
	Target of the Lab Session
	Basic knowledge on Sql and sqlite.
	Intro to sql
	Relational Database
	Keys, linking
	sql in ece472:

	Loading a table
	Basic Sql Syntax
	SELECT ... FROM ...
	ORDER BY

	Operators
	Join
	Union
	Intersect

	Workflow of Query using sql
	Lab Submissions
	Reference

