
Lecture 5: const  Qualifier  
Const  qualifier is used to avoid changing. Any changing to const  variants will be warned by 

compiler.

1. Const  & Data variables  

Constant data variable must initialized when declared and shouldn't be changed.

Const  Global  

Say when we declare a string for jAccount username, and want to ensure that the max size of the 
string is 32.  

This is bad, because the number 32 here is of bad readability.

This is where we need constant global variables.  

For good coding style, use UPPERCASE for const  globals.

const data-type variable = value;

const int A = 10; //√

const int B; //x

A += 10;  //x

int main(){

    char jAccount[32];

    cin >> jAccount;

    for (int i = 0; i < 32; ++i){

        if (jAccount[i] == '\0'){

            cout << i << endl;

            break;

        }

    }

}

const int MAX_SIZE = 32;

int main(){

    char jAccount[MAX_SIZE];

    cin >> jAccount;

    for (int i = 0; i < MAX_SIZE; ++i){

        if (jAccount[i] == '\0'){

            cout << i << endl;

            break;

        }

    }

}

af://n0
af://n3
af://n7
af://n14


2.Const  & Pointer  
pointer to const  type is a little bit special.

Example:

Only pointer to const  variable like P  can be not initialized when declared.
The const  only works on the variable it declares: can point to non-const variants and no 
changing through that pointer only.

What if I do const int A; int* p = &A; ?  We can change what p points to but can change the 

value of A.

ONE PRINCIPLE to know what const  applies to： 

const  applies to the thing left of it. If there is nothing on the left then it applies to the thing right 

of it.

Exercises: 

 

3. Const  & References  
Const reference are allowed to be bind to right values

Exercises:

Consider the following program. Which lines cannot compile?

int a = 0;

const int b; //x

const int c=0; //√

const int *P; //√

P = &a；

*p=1; //x

a=1; //√

const int* a                 // a pointer to a constant integer

int const * a                // a pointer to a constant integer

int* const a                 // a constant pointer to an integer

const int* const a           // a constant pointer to a constant integer

int const * const a          // a constant pointer to a constant integer

int main(){

// Which lines cannot compile?

int a = 1;

const int& b = a; //any left value is right value

const int c = a;

int &d = a;

const int& e = a+1;

const int f = a+1;

int &g = a+1; // x

int &g = b; // x

b = 5; // x

af://n14
af://n29


Normally, if a const reference is bind to a right value, the const reference is no difference to a 
simple const. b  and c  is similar.

Why do we need const  references or pointers ?  

See the following example.

Reasons to use a constant reference:

Passing by reference or pointer -> avoids copying;
const  -> avoids changing the structure.  

Advantage of const  reference over pointer:

Passing rvals directly. eg: frequency("absdfjad", "a");

4. Const  & Function Arguments  

Type Coercion  

const type&  to type&  is incompatible.
const type*  to type*  is incompatible.

type&  to const type&  is compatible.

type*  to const type*  is compatible.

In one word, only coercion from non-const  to const  is allowed.

Example:

Consider the following example:  

c = 5; // x

d = 5; //a = 5

}

class Large{

    // I am really large.

};

int utility(const Large &l){

    // ...

}

int utility(const Large *l){

    // ...

}

data-type function(const data-type variable)

{

    //body

}

void reference_me(int &x){}

void point_me(int *px){}

void const_reference_me(const int &x){}

void main() {

af://n35
af://n46
af://n48


 

Const  and Typedef  
Type Definition

When some compound types have long names, you probably don’t want to type them all. This is 
when you need typedef. Typedef is just an alias name.  It will improve the portability and 
readability of your code.  

Typedef may nest.

Exercise:  

 

Lecture 6: Procedural Abstraction  
Abstraction  
Abstraction is the principle of separating what something is or does from how it does it.

    int x = 1;

    const int *a = &x;

    const int &b = 2;

    int *c = &x;

    int &d = x;

    

    // Which lines cannot compile?

    int *p = a; // x

    point_me(a); // x

    point_me(c);

    reference_me(b); // x

    reference_me(d);

    const_reference_me(*a);

    const_reference_me(b);

    const_reference_me(*c);

    const_reference_me(d);

}

typedef real_name alias_name

typedef int* int_ptr_t;

typedef cosnt int const_int_t;

typedef const int_ptr_t Type1; //type1=const_ptr to int

typedef const_int_t* Type2; //type2=ptr to const_int

typedef const Type2 Type3; //type3=const_ptr to const_in

af://n63
af://n71
af://n72


Properties  

Provide details that matters (what)
Eliminate unnecessary details (how)

Different roles in programming  

The author: who implements the function
The client: who uses the function 

In individual programming, you are both.

Example of client: you use cout to output, which is written by author of C++. You don't need to 
worry about how cout works. 

2 types of abstractions  

Data Abstraction (ADT)
Procedural Abstraction

Focus: Procedural Abstraction  
Functions are mechanism for defining procedural abstractions.

Difference between abstraction and implementation:  

Abstraction tells what and implementation tells how.
The same abstraction could have different implementations.

Properties of proper procedural abstraction implementation:  

Local: the implementation of an abstraction does not depend of any other abstraction 
implementation.
Substitutable: Can replace a correct implementation with another.

Composition  

Type signature
Specification  

Type signature  

includes return type, number of arguments and the type of each argument.
no function name.

Specifications  

There are 3 clauses in the specification comments:

REQUIRES: preconditions that must hold, if any
MODIFIES: how inputs will be modified, if any
EFFECTS: what the procedure is computing

af://n74
af://n80
af://n87
af://n93
af://n95
af://n101
af://n107
af://n113
af://n119


Completeness of functions are defined as follows:

If a function does not have any REQUIRES clauses, then it is valid for all inputs and is 
complete.
Else, it is partial.

You may convert a partial function to a complete one by exception handling.

Note: Specifications are just comments. You cannot really prevent clients from doing stupid 
things, unless you use exception handling. While in VE280, you can always assume the input is 
valid if there is a REQUIRES comment.  

Lecture 7: Recursion; Function Pointers;
Function Call Mechanism

 

Recursion  
Recursion simply means to refer to itself. Its idea is to divide and conquer, so always think about 
relation between large case and its part. It will loop until the boundary, or base case, is reached.

For any recursion problem, you may focus on the 2 compositions:

Base cases: There is (at least) one “trivial” base or “stopping” case.
Recursive step: All other cases can be solved by first solving one smaller case, and then 
combining the solution with a simple step.

A trivial example would be:  

Sometimes it is hard to implement a recursive function directly due to lack of function arguments. 
In this case, you may find a helper function useful.

Instead of  

void log_array(double arr[], size_t size)

// REQUIRES: All elements of `arr` are positive

// MODIFIES: `arr`

// EFFECTS: Compute the natural logarithm of all elements of `arr`

{

    for (size_t i = 0; i < size; ++i){

        arr[i] = log(arr[i]);

    }

}

i

nt factorial (int n) {

// REQUIRES: n >= 0

// EFFECTS: computes n!

    if n == 0

        return 1; // Base case

    else

        return n * factorial(n-1); // Recursive step

}

af://n137
af://n138


One may  use

where recursion_helper keeps updating the extra arguments, eg. is_palindrome_helper(string 

s, int begin, int end)  in lecture slides keeps increasing begin  and deceasing end .

Function Pointers  
Variables that store the address of functions are called function pointers. By using them, we could 
pass functions into functions, return them from functions, and assign them to variables. 

Consider when you only need to change one step in a larger function, like changing “adding” all 
elements in the matrix to “multiplying” all the elements. It is a waste of time and space to repeat 
the code, thus programmers would consider using a function pointer.  

Mind the difference between function pointer and other pointer. Do not use "&" when assigning 
and do not use "*" when calling. (Although they actually both work, it is a convention and it is 
easier.)  You can think of assigning as, for example, telling compiler to substitute foo  with avg  

when codes call foo .

Function Call Mechanism  

recursion(...){

    ...

    recursion(...)

    ...

}

recursion(...){

    ...

    recursion_helper(...)

    ...

} 

recursion_helper(...){

    ...

    recursion_helper(...)

    ...

}

int avg(int arr[], size_t size) {

// EFFECTS: return average of arr!

    ...

}

int get_stats(int arr[], size_t size, int (*foo)(int[], size_t)){

    ...

    foo(arr, size);

    ...

} 

int main(){

    int arr[] = {1,2,3,4,5};

    cout << get_stats(arr, 5, avg) << endl;

}

af://n152
af://n157


Call stack: place for functions' activation records and is last in first out.

At each function call, the program does the following:

1. Evaluate the actual arguments.

For example, your program will convert y = add(1*5, 2+2)  to y = add(5, 4) .

2. Create an activation record (stack frame)

The activation record would hold the formal parameters and local variables.

For example, when int add(int a, int b) { int c= a+b; int d=a*b; return c*d; }  is 

called, your system would create an activation record to hold:

○a , b (formal parameters)

○c, d (local variable)

3. Copy the actual values from step 1 to the memory location that holds formal values.
4. Evaluate the function locally. (run the codes)
5. Replace the function call with the result.


For the same example, your program will convert y = add(5, 4)  to  y = 9  .
6. Destroy the activation record.

Credit  
2021 RC slides

Lecture 5, 6, 7

 

af://n172

	Lecture 5: const Qualifier
	1. Const & Data variables
	Const Global  

	2.Const & Pointer
	3. Const & References
	Why do we need const references or pointers ?  

	4. Const & Function Arguments
	Type Coercion

	Const and Typedef

	Lecture 6: Procedural Abstraction
	Abstraction
	Properties
	Different roles in programming
	2 types of abstractions

	Focus: Procedural Abstraction  
	Difference between abstraction and implementation:
	Properties of proper procedural abstraction implementation:
	Composition
	Type signature
	Specifications  


	Lecture 7: Recursion; Function Pointers; Function Call Mechanism  
	Recursion
	Function Pointers  
	Function Call Mechanism  

	Credit

