
VE280 2022FA MID RC PART2
VE280 2022FA MID RC PART2

L3: Developing Programs
Compilation Process
Use g++ to Compile Multiple Resources
Header File and Header Guard
Makefile

L4 Review of C++ Basics
Basic Concepts
lvalue and rvalue
Function declaration and definition
Reference
Pointers
Structs

L12 Exception

L3: Developing Programs

Compilation Process

Compilation process in Linux contains three parts:

Preprocessing: The codes with # starts will be implemented.

such as: #define , #include , #ifdef

Compiler: Compiles the .c / .cpp file into object code.

The .c / .cpp files will be compiled to .o .

Linker: Links object files into an executable.

.o files will be linked to an executable file.

Use g++ to Compile Multiple Resources

Three files class.cpp , function.cpp and main.cpp in your directory.

The simplest way to compile them is:\

g++ -o [name] class.cpp function.cpp main.cpp ,

where [name] can be replaced by any name you want.

The complete compile process should be:

g++ -c class.cpp \Rightarrow Compile class.cpp to class.o

g++ -c function.cpp \Rightarrow Compile function.cpp to function.o

g++ -c main.cpp \Rightarrow Compile main.cpp to main.o

g++ -o [name] class.o function.o main.o \Rightarrow Link .o files to an executable file
named [name] .

af://n0
af://n3
af://n4
af://n22

./[name] \Rightarrow Run the executable file.

Remark: The preprocessing part is implemented automatically by g++ , so do not compile
header files.

Header File and Header Guard

Motivation :When we develop a large project where some header files are included for many
times in many files.

For example, if #include "class.h" in both main.cpp and function.cpp , the header file

class.h is included twice.

 This may cause multiple definitions of the classes or functions defined in the header file, which
will lead to tough problems.

Header guard: used to avoid the above situation.

class.h :

Remark: You must write a header guard for any header file.

Mechenism:

For the first time when class.h is included, the #ifndef CLASS_H will return true and the

environmental variable CLASS_H will be defined. Then the body codes will be implemented until

the #endif .

For the second time when the class.h is included, since the variable CLASS_H already exists in

the environment, #ifndef CLASS_H will return false and the body codes will not be implemented
twice.

Makefile

Makefile: used to write all the commands during the compile process together in a file.

Makefile :

#ifndef CLASS_H

#define CLASS_H

CODE BODY...

#endif

main: main.o class.o function.o

 g++ -o main main.o class.o function.o

class.o: class.cpp

 g++ -c class.cpp

main.o: main.cpp

 g++ -c main.cpp

function.o: function.cpp

 g++ -c function.cpp

clean:

af://n32
af://n43

How the makefile is constructed:

Use : to link the demand file and dependent files.

Use a <tab> start command to create the demand file from the dependent files.
Always switch the line between two demands.
You can add environmental variables in front of a makefile (optional).

How to use a makefile:

Type make to implement the first demand of makefile.

Type make [demand name] to implement a specific demand

L4 Review of C++ Basics

Basic Concepts

Built-in data types:

int , double , float , char , string .

Question: How many memories does an int variable take? How many doese a char ?

Input and output by "stream":

cout<<"hello world"<<endl , cin>>[variables]

Operators:

Arithmetic: + , - , * , /
Comparison: >= , ==

x++ or ++x

Flow: >> , <<

Branch:

if/else
switch/case

Loop:

while
for

lvalue and rvalue

lvalue: An expression which may appear as either the left-hand or right-hand side of an
assignment.

rvalue: An expression which may appear on the right- but not left-hand side of an
assignment

Common lvalues: local variables, return type of "++x", *ptr, ptr[index].
Common rvalues: constant, (x+y), return type of "x++" .

Question: What is the result of x ?

 rm -f main *.o

x = 3;

++x = x;

//x++ = x;

af://n64
af://n65
af://n98

Function declaration and definition

Declaration: should appear before the function is called.

Syntax:

Definition: can appear after the function is called.

Syntax:

Reference

Reference: an important feature of c++.

Comment: Reference is just like the pointer, which means if we change the value of b , the value
of a will also be changed.

Question: Are the following codes correct? What are the values of a , b and ref .

Pass the value by reference to a function, like:

Benefit: Avoid make a copy of a very big variable, and can change the value of the variable by the
function.

Return_Type Function_Name(Parameter_List);

//comment

Return_Type Function_Name(Parameter_List)

{

 //function body

}

//comment

int a = 3,b = 1;

int &ref = a;

&ref = b;

int &ref = 3;

const int $ref = 3;

int a = 3,b = 1;

int &ref = a;

ref = b;

void f(int &a){

 a*=2;

}

af://n111
af://n122

Pointers

Some functions of pointer can be replaced by reference.
Still very important in the dynamic memory allocation.

Structs

A set of variables.
What is the total memory of a stuct variable?
How to declare and define a struct? How to create a struct variable?
How to access a struct pointer's member attributes?

L12 Exception
Motivation: Check the runtime failure efficiently and elegantly.

Mechanism: If the exception (failure) occurs, the program will move to the handler.

In c++, we use the "try-catch" block, with try block throw the exception and catch block handle it.

For different types of exceptions, you can "throw" different variable types so that the program
can goto different handlers.

After the exception is thrown, the handler should be the first that can handle this failure. After
the exception is handled by "catch", the program will implement the codes right after the "catch"
block.

Question:

1.

Write the next two statements that first try to connect ifs to the file named "result.txt" and

then test if that is successful. If not, throw an exception with the file name.

2. What is the problem in the following block?

void foo() {

 try { ... throw var;}

 catch (Type var) { }

}

try {

 if (foo) throw 2.0;

 // some statements go here

 if (bar) throw 4;

 // more statements go here

 if (baz) throw ‘a’;

}

 catch (int n) { }

 catch (double d) { }

 catch (char c) { }

 catch (...) { }

ifstream ifs;

string filename = "result.txt";

af://n133
af://n139
af://n150

int factorial(int n) {

int result;

if(n < 0) throw n;

for(result = 1; n>0; n--)

 result *= n;

return result;

}

int main() {

 int y;

 y = factorial(-1);

 catch(int v) {

 cout << "Error: negative input: " << v << endl;

}

return 0;

}

	VE280 2022FA MID RC PART2
	L3: Developing Programs
	Compilation Process
	Use g++ to Compile Multiple Resources
	Header File and Header Guard
	Makefile

	L4 Review of C++ Basics
	Basic Concepts
	lvalue and rvalue
	Function declaration and definition
	Reference
	Pointers
	Structs

	L12 Exception

