
Commands Meaning? Options? Familiar?

ls

man

pwd

cd

touch

mkdir

rmdir

VE280 2022FA Mid RC
VE280 2022FA Mid RC

Tips for Exam
L2: Linux Command Checking List

File Permissions
L10: I/O Streams

cin , cout & cerr
>> and <<
Useful functions:

File Stream
String Stream

L8: Enum
Example

L9: Program Arguments
L11: Testing

Concepts
Things you need know at the very least
Example

L13: Abstract Data Type
What is ADT?
Why use ADT?
ADT in C++: Class

Getters & Setters
Initialization List
Const Member Functions

References:

Tips for Exam
Be HONEST
Be careful
Be critical

L2: Linux Command Checking List

af://n0
af://n3
af://n12

Commands Meaning? Options? Familiar?

rm

cp

mv

cat

diff

> , < , >>

/ , ~ , . , ..

File Permissions

The general syntax for long format is:

<permission> <link> <owner> <group> <size>(in bytes) <modified_time> <file_name>

In total, 10 characters for permission syntax:

char 1: Type. - for regular file and d for directory.

char 2-4: Owner permission. r for read, w for write, x for execute.

char 5-7: Group permission. r for read, w for write, x for execute.
char 8-10: Permission for everyone else. r for read, w for write, x for execute.

Example:

L10: I/O Streams

cin , cout & cerr

>> and <<

In C++, streams are unidirectional, which means you could only cin >> and cout << .

If we look into cin , it's an object of class istream (input stream). operator>> (the extraction
operator) is one of it's member function.

Return value also a reference of istream -> it can be cascaded like cin >> foo >> bar >> baz;

Useful functions:

Differences:

drwxr-xr-x 6 mary mary 1024 Oct 9 1999 web_page

istream& getline (istream& is, string& str);

std::ios::operator bool // member of istream -> if(cin), while(cin) -> read

until eof

istream& get (char& c); // member of istream

af://n89
af://n104
af://n105
af://n106
af://n110

>> will read until reaching the next space or \n , and the space and \n will still be left in the

buffer. And space and \n won't be stored into the parameter.
getline would read a whole line and discard the \n at the end of the line directly.

get() reads a single character, whitespace or newlines.

File Stream

String Stream

L8: Enum
Enum is a type whose values are restricted to a set of integer values. Advantages:

Use less memory than std::string

More readable than const int or char

Limit valid value set, so compiler help you find spelling mistakes.

Example

#include <fstream>

std::ifstream iFile; // inherit from istream

std::ofstream oFile; // inherit from ostream

iFile.open("myText.txt"); // if unsuccessful to open, iFile would be in failed

state, if(iFile) returns false. But member function open() has void return

type!!!

iFile >> bar;

while(getline(iFile, line)) // simple way to read in lines.

oFile << bar;

#include <sstream>

istringstream iStream; // inherit from istream

iStream.str(line); // assigned a string it will read from, often used for

getline

iStream >> foo >> bar;

iStream.clear(); // Sometimes you may find this useful for reusing iStream

ostringstream oStream; // inherit from ostream

oStream << foo << " " << bar;

string result = oStream.str(); // method: string str() const;

af://n120
af://n123
af://n126
af://n135

By default the enum value starts from 0, and increments for each value

But you can also assign any integer value to them
Values in enum (a, b, c,…) can be treated as global const int

Can be compared (<, >, ==, !=)

L9: Program Arguments
Write a main function that takes program arguments:

Or in a way easier to memorize:

Question: If a executable program is named ex1 , then argv[0] must be ./ex1 ?

L11: Testing

Concepts

Five Steps in testing:

Understand the specification (Design requirement)
Identify the required behaviors (Specification boil down; abstract; Party A)
Write specific tests (Simple+ Normal+ Nonsense)
Know the answers for those tests (The correct output; concrete; Party B)
Stress tests (large and long running)

Things you need know at the very least

Determine a test case to be simple/normal/nonsense.
Write simple/normal/nonsense test cases for a function/program.
Explain why is a test case simple/normal/nonsense.

#include <iostream>

enum A {

 a, b, c=-1, d, e=5, f, g=a + e, h

};

int main() {

 std::cout << a << ' ' << b << ' ' << c << ' ' << d << ' '

 << e << ' ' << f << ' ' << g << ' ' << h << '\n';

 // Output is 0 1 -1 0 5 6 5 6

 return 0;

}

int main(int argc, char *argv[]) {

 /* code here */

}

int main(int argc, char ** argv) {

 /* code here */

}

af://n149
af://n155
af://n156
af://n169

Example

Specification

Behavior

Normal: return _____ for input _____

Boundary: return _____ for input _____

Nonsense: return _____ for input _____

L13: Abstract Data Type
What is ADT?

ADTs provide an abstract description of values and operations. In short, to define an ADT, we
only need to know:

What values it represents: a mobile phone that can make and receive calls
What can it do to these values (operations): turn on/off, make/receive call, text message, play
games...

Why use ADT?

Abstraction hides implementation detail and makes users’ life easier. ADTs provide two
advantages for users:

Information hiding: We don't need to know the details (how messages travel across the air to
reach our phone?)

1. The user do not need to know (and should not need to know) how the object is
represented.

2. The user do not need to know (and should not need to know) how the operations on
the object are implemented.

Encapsulation: the objects and their operations are defined in the same place (You don't
need to buy the screen, the circuit board, the wifi module...You just buy a phone) combine
both data and operations in one entity.

ADT also benefits the developers:

ADTs are local: the implementation of other components of the program does not depend
on the implementation of ADT. To realize other components, you only need to focus locally.
ADTs are substitutable: you can change the implementation and no users of that type can
tell.

ADT in C++: Class

Getters & Setters

Write a function to calculate factorial of non-negative integer, return -1

if the input is negative.

class Student {

 int score; // default: private

public:

 // A getter of score, qualified as const

 int getScore() const {return this->score;};

af://n177
af://n191
af://n192
af://n199
af://n217
af://n218

Initialization List

The order of initialization is the order they are defined in the class
The performance (both time and memory) can be better than assigning to each values.
A member that don’t have a default constructor must be initialized in the initialization list.
const members and references can only be initialized in the initialization list.

Const Member Functions

A const qualifier after member functions promises that this member function will not

modify this object.

Also, inside a const member function, non-const member functions (as well as other
functions that may modify the object) cannot be called (to ensure that the object will not be
modified).

References:
	 [1] Weikang, Qian. VE280 Lecture 2, 8-11, 13.

	 [2] Yunuo, Chen. VE280 Mid RC part 2.

 // A setter of score. New scores lower than 0 is regarded as illegal.

 void setScore(int newScore) {

 if (newScore < 0) {

 cout << "How is that possible?" << endl;

 return;

 }

 this->score = newScore; // this pointer

 };

};

ClsName::ClsName() : base(..), m1(..), m2(..) {

 // Code for the some other operations need to be done during construction

}

class Sample {

 int val;

public:

 void setVal() const { val = 0; } // Compile error

};

af://n220
af://n231
af://n238

	VE280 2022FA Mid RC
	Tips for Exam
	L2: Linux Command Checking List
	File Permissions

	L10: I/O Streams
	cin , cout & cerr
	>> and <<
	Useful functions:

	File Stream
	String Stream

	L8: Enum
	Example

	L9: Program Arguments
	L11: Testing
	Concepts
	Things you need know at the very least
	Example

	L13: Abstract Data Type
	What is ADT?
	Why use ADT?
	ADT in C++: Class
	Getters & Setters
	Initialization List
	Const Member Functions

	References:

