
VE280 Final Review (L15-16 & 21-23）
Lecture 15: Invariants
An invariant is a set of conditions that must always evaluate to true at certain well-defined points;
otherwise, the program is incorrect.

Representation Invariant

For ADT, it is called representation invariant.

It describes the conditions that must hold on those members for the representation to correctly
implement the abstraction. These conditions are not naturally preserved, but need your caution
in implementing the class.

Establishing the Invariant

Each method in the class can assume that the invariant is true on entry if:

The representation invariant holds immediately before exiting each method
Each data element is truly private.

Therefore, the class is self-consistent.

Essentially, for each method, you should:

Do the work of the method (implement)
Repair the invariants you broke (if any)

Checker Function

defensive programming: write a private method to check whether all invariants are true (before
exiting, or after entering, each method):

Next, add the following code right before returning from any function that modifies any of the
representation: assert(repOK()) ;

you can write the same line at the beginning of every method too, to check whether the
assumption the method relies on is true.

Exercise 1

How should repOK() be? What invariant should load(..) repair?

bool repOK();

// EFFECTS: returns true if the rep. invariants hold

af://n810
af://n812
af://n814
af://n817
af://n831

Solution:

Lecture 16: Dynamic Memory Allocation;
Overloading, Default Arguments; Destructor

class buckets{

 unsigned int buckets[MAX_SIZE];//buckets initially empty to be loaded

 unsigned int firstLoadedBucket;//the index of first loaded bucket. zero if

all empty

 unsigned int bucketLoadedNum;//the number of loaded bucket

 unsigned int loadNum;//the amount of load

 double loadFactor;//(loadNum/MAX_SIZE)

 bool repOK();// EFFECTS: returns true if the rep. invariants hold

 ...

 public:

 void load(unsigned int bucket_index, unsigned int load);

 ...

bool buckets::repOK(){

 unsigned int true_firstLoadedBucket, true_bucketLoadedNum=0, true_loadNum=0;

 for(unsigned int i=0; i<MAX_SIZE; i++){

 if (buckets[i]!=0){

 true_bucketLoadedNum++;

 true_loadNum+=buckets[i];

 }

 }

 for(int i=0; i<MAX_SIZE; i++){

 if (buckets[i]!=0){

 true_firstLoadedBucket=(unsigned int)i;

 break;

 }

 }

 return true_firstLoadedBucket==firstLoadedBucket &&

 true_bucketLoadedNum=bucketLoadedNum && true_loadNum=loadNum &&

 loadFactor==((double)true_loadNum)/((double)MAX_SIZE);

}

void buckets::load(unsigned int bucket_index, unsigned int load){

 //assert(repOK());

 if (load!=0){

 if(buckets[bucket_index]==0)

 bucketLoadedNum++;

 buckets[bucket_index]+=load;

 if(bucket_index<firstLoadedBucket)

 firstLoadedBucket=bucket_index;

 loadNum+=load;

 loadFactor=((double)loadNum)/((double)MAX_SIZE);

 }

 //assert(repOK());

}

af://n842

Dynamic Memory Allocation

Types of Variables:

There are basically three types of variables in C++ programs:

Global Variables (static)

Defined outside functions
Lifetime: Their space is set aside before the programs runs (at compile time), and is
reserved until the program terminates.

Local Variables (static)

Defined within a block (basically insides curly brackets {})
Lifetime: Space is set aside when relevent block is entered (at run time), and reserved
until the block is exited.

Dynamic Variables

the compiler doesn't need to know how big it is and how long it lives.
Space is allocated using new, and deallocated using delete by programmer.

Memory Structure:

Text stores the code, heap stores dynamic variables and stack stores memory for functions
(including main function and local variables).

When stack and heap use up the big void, the program overflows. How many memory they use is
indicated by a pointer pointing to the top of heap and another pointing to the bottom of stack.

The "Stack" and "Heap" here refers to specific locations in the memory. They are not equivalent to
the data structures called "stack" and "heap", though their behavior is similar.

af://n843
af://n844
af://n868

Dynamic Memory

Why dynamic memory?

Local variables can only be fixed size, we want to change the size at runtime.

This code may be compiled successfully with some compilers. However, it is not allowed in ISO
c++ standard. Some compilers allow this as an extension. You can add -pedantic flag to turn on
the warning.

We don't know the exact lifetime of the objects.

Allocation

However, you cannot allocate an array of objects using non-default constructors.

When using new and new[] , following things happens:

1. Allocates space in heap (for one or an array of objects).
2. Constructs object in-place (mainly be calling constructor).
3. Returns the “first” address.

You may remeber malloc and free in the C language. They only deal with the memory while do

nothing to the content in it. That means in C you need to malloc the space and initialize it by hand.

Deallocation

Use delete and delete[] to deallocate single object and arrays respectively.

Memory Leak

The usage of new/delete is very easy. The difficult point is when and where to use them.

Basically, memory leak happens when you lose the address of some dynamic memory (then it
would be impossible for you to delete that memory).

Example:

int length;

cin >> length;

int arr[length];

Type* obj0 = new Type; // Default construction

Type* obj1 = new Type(); // Default construction

Type* obj2 = new Type(arg1, arg2); // Constructor with 2 params

Type* objA0 = new Type[size]; // Default cons each elt

Type* objA1 = new Type[size](); // Same as obj A0

int* a=new int;//see 'int' as a class

int* b=new int(1);

int* c=new int[5];

int* d=new int[5]{0};//[0,0,0,0,0]

// Each time foo() is called, there is new memory allocated.

// And since p is a local variable, each time p will point to a new address

void foo() {int* p = new int(0); /* Code */}

af://n873

Each time foo() is called, some memory is occupied and will not be released even after the

program terminates. Gradually, you will drain out all memory of your computer, which is very
bad.

Check Memory Leak

1. valgrind

Command: valgrind --leak-check=full ./program <args>

Function: search for memory leaks and give details of each individual leak.

To install, type the command: sudo apt-get install valgrind

2. fsanitize

compile the program using g++ -o program <file> -fsanitize=address and run.

Overloaded Constructor and Default Argument

Overloaded Constructor

Functions with same name can have different versions, and compiler tells which function to call
based on the actual argument count and types

For constructor, programmer can choose default initialization (eg. MAXELTS) or sepcialized (eg.
give a size).

Default Argument

There's a easier method, using default argument.

Default argument means when you put in no argument, the function can assume a default
argument

for example, IntSet(int size = MAXELTS); will realize the function of overloaded constructor

with just one function.

af://n898
af://n906
af://n907
af://n912

Mind that you should put default argument to the end

Also mind that you don't need to write default argument when implementing.

Destructor

Class's member is dynamic

When all the members of a class are static, there's no need to write the destructor, since there's a
default one that help the compiler automatically released memory of the class's members when
the program ends.

However when there are some dynamic members in a class, the compiler can not deal with the
heap, so we need to write a destructor to help released them at once.

Class is dynamic

The destructor can be called automatically when a class's life ends (like main function or other
function ends). But if you dynamically declare a class, it of course should be deleted by
programmer, since a dynamic variable can't be deleted by compiler and its destructor won't be
called.

Exercise 2

How to implement the constructors and the destructor?

Solution:

IntSet(); //size=MAXELT

IntSet(4); //size=4

int add(int a, int b = 0, int c = 1); // OK

int add(int a, int b = 1, int c); // Error

class buckets{

 unsigned int *buckets;//dynamic buckets initially empty to be loaded

 unsigned int firstLoadedBucket;//the index of first loaded bucket

 unsigned int bucketLoadedNum;//the number of loaded bucket

 unsigned int loadNum;//the amount of load

 double loadFactor;//(loadNum/MAX_SIZE)

 double maxLoadFactor;//upper bound of loadFactor

 public:

 buckets(unsigned int size=MAX_SIZE, double max_factor=2);

 buckets(unsigned int load; unsigned int index;

 unsigned int size=MAX_SIZE, double max_factor=2);

 ~buckets();

 ...

buckets::buckets(size, max_factor):buckets(new unsigned int[size]{0}),

firstLoadedBucket(0), bucketLoadedNum(0), loadNum(0), loadFactor(0),

maxLoadFactor(max_factor){}

buckets::buckets(load, index, size, max_factor):buckets(new unsigned int[size]

{0}), loadNum(load), loadFactor((double)load/(double)size),

maxLoadFactor(max_factor){

 if (load==0){

af://n920

Lecture 21: Operator Overloading
C++ lets us redefine the meaning of the operators when applied to objects of class type. This is
known as operator overloading. Like any other function, an overloaded operator has a return
type and a parameter list.

Unary operators

An overloaded unary operator has no (explicit) parameter if it is a member function and one
parameter if it is a nonmember function.

Examples:

Binary operators

An overloaded binary operator would have one parameter when defined as a member and two
parameters when defined as a nonmember function.

Examples:

 firstLoadedBucket=0;

 bucketLoadedNum=0;

 }else{

 firstLoadedBucket=index;

 bucketLoadedNum=1;

 buckets[index]=load;

 }

}

buckets::~buckets(){

 delete[] buckets;

}

//you don't have to remember these

A& A::operator++(); // ++a

A A::operator++(int); // a++

A& A::operator--(); // --a

A A::operator--(int); // a--

void operator++(& A); // ++a for nonmember function

//you should remember the argument and return types

A& A::operator= (const A& rhs);

A& A::operator+= (const A& rhs);

A& A::operator-= (const A& rhs);

A operator+ (const A& lhs, const A& rhs);//similar for -, *, / ...

A A::operator+(const A &r);//returns *this “+” r

istream& operator>> (istream& is, A& rhs);

ostream& operator<< (ostream& os, const A& rhs);

bool operator== (const A& lhs, const A& rhs);

bool operator!= (const A& lhs, const A& rhs);

VE280 2021FA Final RC part1.md 2021/12/10

6 / 20

bool operator< (const A& lhs, const A& rhs);

af://n932
af://n934
af://n938

Friendship

We may want to access private member of class instances. You could provide an accessing
operator for each of the member, but often it is not a good idea. One workaround is specifically
grant access to the protected members. This can be done by using the friend keyword:

It doesn’t matter where this is marked public or private.

friend can also grant access to classes, and Baz now can access private member of Bar:

Pay attention that friend is not mutual. If Class A declares Class B as friend. Class B can access
Class A’s private member, but the other way around doesn’t work.

Make binary operators friend functions:

Lecture 22: Linear List; Stack

Linear List

A collection of zero or more integers; duplicates possible. It supports insertion and removal by
position.

bool operator<= (const A& lhs, const A& rhs);

bool operator> (const A& lhs, const A& rhs);

bool operator>= (const A& lhs, const A& rhs);

// especially

const T& A::operator[] (size_t pos) const;

T& A::operator[] (size_t pos);

class Bar {

friend void foo (const MyClass &mc);

}

class Bar {

friend class Baz;

}

class Complex {

// OVERVIEW: a complex number class

double real;

double imag;

public:

Complex(double r=0, double i=0);

Complex &operator += (const Complex &o);

friend Complex operator+(const Complex &o1, const Complex &o2);

};

af://n942
af://n951
af://n952

Insertion

Example: L1 = (1, 2, 3)

L1.insert(0, 5) = (5, 1, 2, 3);

L1.insert(1, 4) = (1, 4, 2, 3);

L1.insert(3, 6) = (1, 2, 3, 6);

L1.insert(4, 0) throws BoundsError

Removal

Example: L2 = (1, 2, 3)

L2.remove(0) = (2, 3);

L2.remove(1) = (1, 3);

L2.remove(2) = (1, 2);

L2.remove(3) throws BoundsError

Stack

Property: last in, first out (LIFO)

size() : number of elements in the stack.

isEmpty() : check if stack has no elements.

push(Object o) : add object o to the top of the stack.
pop() : remove the top object if stack is not empty; otherwise, throw stackEmpty .

Object &top() : returns a reference to the top element.

Implementation Comparison

1. Using Arrays

Need an int size to record the size of the stack.

size() : return size;

isEmpty() : return (size == 0);

push(Object o) : add object o to the top of the stack and increment size . Allocate more

space if necessary.
pop() : If isEmpty() , throw stackEmpty ; otherwise, decrement size .

Object &top() : returns a reference to the top element Array[size-1].

2. Using Linked Lists

size() : LinkedList::size();

isEmpty() : LinkedList::isEmpty();

push(Object o) : insert object at the beginning LinkedList::insertFirst(Object o); .
pop() : remove the first node LinkedList::removeFirst();

Object &top() : returns a reference to the object stored in the first node

void insert(int i, int v) // if 0 <= i <= N (N is the size of the list),

//insert v at position i; otherwise, throws BoundsError exception.

void remove(int i) // if 0 <= i < N (N is the size of the list), remove the i-th

//element; otherwise, throws BoundsError exception.

af://n954
af://n1218
af://n1221
af://n972
af://n997

Lecture 23: Queue
size() : number of elements in the queue.

isEmpty() : check if queue has no elements.
enqueue(Object o) : add object o to the rear of the queue.

dequeue() : remove the front object of the queue if not empty; otherwise, throw

queueEmpty.
Object &front() : return a reference to the front element of the queue.

Object &rear() : return a reference to the rear element of the queue.

Queues Using Linked Lists

How to implement the mothods using linked lists:

enqueue(Object o) : add a node to the end of the linked list.
dequeue() : remove a node from the head of the linked list.

size() : can iterate through the linked list and count the number of nodes.

isEmpty() : check if the pointer to the linked list is NULL.
Object &front() : returns a reference to the node at the head of the linked list.

Object &rear() : returns a reference to the node at the end of the linked list.

Queues Using Arrays

 Let the elements "drift" within the array.

 Maintain two integers to indicate the front and the rear of the queue (advance front when
dequeuing; advance rear when inserting).

 Use a circular array (more space efficient):

 When inserting a new element, advance rear circurlarly; when popping out an element,

 advance front circularly.

 Can be realized by

 Solve the problem of distinguishing an empty queue and full queue:

front = (front+ 1) % MAXSIZE;

rear = (rear+ 1) % MAXSIZE;

af://n997
af://n1012
af://n1027

 Maintain a flag indicating empty or full, or a count on the number of elements in the queue.

 We can see that using array can be more complicated than linked list, and the size can be
restricted by MAXSIZE of array. However, it can be easier to access the elements by index. For
example, the index of the second element can be front+1 (if not exceeding the capacity of array).

Still, accessing elements by index is not very useful in queues.

Deque

Not a proper English word, pronounced as “deck”.

Means double-ended queue

Property: Items can be inserted and removed from both ends of the list.

Methods:

push_front(Object o)

push_back(Object o)

pop_front()

pop_back()

The implementation can be more complicated than queue. Only use it if inserting and removing
from both ends are truly necessary.

af://n1041

	VE280 Final Review (L15-16 & 21-23）
	Lecture 15: Invariants
	Representation Invariant
	Establishing the Invariant
	Checker Function

	Lecture 16: Dynamic Memory Allocation; Overloading, Default Arguments; Destructor
	Dynamic Memory Allocation
	Types of Variables:
	Memory Structure:
	Dynamic Memory
	Check Memory Leak

	Overloaded Constructor and Default Argument
	Overloaded Constructor
	Default Argument

	Destructor

	Lecture 21: Operator Overloading
	Unary operators
	Binary operators
	Friendship

	Lecture 22: Linear List; Stack
	Linear List
	Insertion
	Removal

	Stack
	Implementation Comparison

	Lecture 23: Queue
	Queues Using Linked Lists
	Queues Using Arrays
	Deque

