
VE280 Final Review (L17-18）
Lecture 17: Deep Copy

VE280 Final Review (L17-18）
Lecture 17: Deep Copy

Shallow Copy & Deep Copy
Motivation
Example Code
What is the terrible result?
What does deep copy do?
The Rule of the Big 3/5

Structure
Implementation

Exercise
Lecture 18: Dynamic Resizing

Motivation
Array Example

When do we use Dynamic Resizing?
How to implement a grow() function?

Common selections of new_size

Reference

Shallow Copy & Deep Copy

Motivation

C++ does not know much about your class, the default copy and default assignment operator
it provides use a copying method known as a member-wise copy, also known as a shallow copy.

af://n0
af://n2
af://n4
af://n5

Example Code

What is the terrible result?

1. When you change the value of items in bag2, then the items in bag1 also changes.
2. What if you have a destructor for the class?

What does deep copy do?

Instead, a deep copy copies all fields, and makes copies of dynamically allocated memory pointed
to by the fields.

#include <iostream>

using namespace std;

const int MAX_CAPACITY = 10;

class Bag {

 string *items;

 public:

 Bag();

 void insert(string str); // implementation omitted

};

Bag::Bag() : items(new string[MAX_CAPACITY]) {}

int main() {

 Bag bag1;

 bag1.insert("VE280");

 Bag bag2 = bag1;

 return 0;

}

af://n8
af://n10
af://n16

The Rule of the Big 3/5

If you have any dynamically allocated storage in a class, you must follow this Rule of the Big X,
where X = 3 traditionally and X = 5 after c++11 (see std::move()).

Whenever an object owns resources, any resources, not just memory, it should implement 5
methods: A constructor and a destructor, A copy constructor, a move constructor, a copy
assignment operator, and a move assignment operator.

Structure

The rule: Traditionally constructor/destructor/copy assignment operator forms a rule of 3.

If you need one of them, then you need all of them. You should never leave them unsaid
whenever dynamic allocation is involved.

Implementation

Usually, we would need to implement some private helper functions removeAll() and

copyFrom() , and use them in the big 3. Consider a Dlist (in project 5).

A destructor

A copy constructor

An assignment operator

class MyClass {

 // Member variables

public:

 MyClass(MyClass &that); // Copy constructor

 MyClass &operator=(const MyClass &that); // Overload '=', assignment

operator

 void detroy(); // Destruct behaviour

 ~MyClass(){detroy();} // Destructor

 // Other member functions omitted

};

template <class T>

Dlist<T>::~Dlist() {

 removeAll();

}

template <class T>

Dlist<T>::Dlist(const Dlist<T> &l): first(nullptr), last(nullptr) {

 copyAll(l);

}

af://n20
af://n24
af://n28

Exercise

Consider the following cases, which one/ones is/are called?

Lecture 18: Dynamic Resizing

Motivation

In many applications, we do not know the length of a list in advance, and may need to grow the
size of it when running the program. In this kind of situation, we may need dynamic resizing.

Array Example

When do we use Dynamic Resizing?

When the array is at maximum capacity, we will grow the array. Using grow() method:

The grow method won’t take any arguments or return any values.

It should never be called from outside of the class, so add it as a private method taking no
arguments and returning void.

How to implement a grow() function?

Four steps in general:

Make a new array with desired size. For example,

Copy the elements from the original array to the new array iteratively. Suppose the original
array is arr with size size .

template <class T>

Dlist<T> & Dlist::operator=(const Dlist<T> &l) {

 if (this != &l) {

 removeAll();

 copyAll(l);

 }

 return *this;

}

Polynomial a(1,2);

Polynomial b;

b = a;

Polynomial a(1,2);

Polynomial b = a;

int *tmp = new int[new_size];

for (int i = 0; i < size; i++){

 tmp[i] = arr[i];

}

af://n42
af://n49
af://n50
af://n52
af://n53
af://n60

Replace the variable with the new array and delete the original array. Suppose the original
array is arr :

Make sure all necessary parameters are updated. For example, if the size of array is

maintained, then we can do:

Common selections of new_size

size + 1 : This approach is simplest but most inefficient. Inserting N elements from

capacity 1 needs N(N-1)/2 number of copies.
2*size : Much more efficient than size+1 . The number of copies for inserting N elements

becomes smaller than 2N .

What about even larger (eg: size^2)? Usually not good, for it occupies far too much
memory.

Good Luck && Take Care! 👍

Reference
[1] Yunuo, Chen. VE280 FA2021 RC 7.

[2] Weikang, Qian. VE280 Lecture Slides 2022.

delete [] arr;

arr = tmp;

size = new_size;

af://n78
af://n87

	VE280 Final Review (L17-18）
	Lecture 17: Deep Copy
	Shallow Copy & Deep Copy
	Motivation
	Example Code
	What is the terrible result?
	What does deep copy do?
	The Rule of the Big 3/5
	Structure
	Implementation

	Exercise

	Lecture 18: Dynamic Resizing
	Motivation
	Array Example
	When do we use Dynamic Resizing?
	How to implement a grow() function?

	Common selections of new_size

	Reference

