
VE280 FA22 RC7
Lecture 17: Deep Copy

VE280 FA22 RC7
Lecture 17: Deep Copy

Shallow Copy & Deep Copy
Motivation
Example Code
What is the terrible result?
What does deep copy do?
The Rule of the Big 3/5

Structure
default keyword

Implementation
Exercise

Lecture 18: Dynamic Resizing
Why do we need Dynamic Resizing?
Array Example

When do we use Dynamic Resizing?
How to implement a grow() function?

Difference between delete and delete[]
Common selections of new_size

Exercises
Reference

Shallow Copy & Deep Copy

Motivation

C++ does not know much about your class, the default copy and default assignment operator
it provides use a copying method known as a member-wise copy, also known as a shallow copy.

This works well if the fields are values, but may not be what you want for fields that point to
dynamically allocated memory. The pointer will be copied, but the memory it points to will not
be copied: the field in both the original object and the copy will then point to the same
dynamically allocated memory, this causes problem at erasure, causing _______________ .

af://n0
af://n2
af://n4
af://n5

Example Code

What is the terrible result?

1. When you change the value of items in bag2, then the items in bag1 also changes.

2. What if you have a destructor for the class?

Note: C++ Variable Life Scope

What does deep copy do?

Instead, a deep copy copies all fields, and makes copies of dynamically allocated memory pointed
to by the fields.

#include <iostream>

using namespace std;

const int MAX_CAPACITY = 10;

class Bag {

 string *items;

 public:

 Bag();

 void insert(string str); // implementation omitted

};

Bag::Bag() : items(new string[MAX_CAPACITY]) {}

int main() {

 Bag bag1;

 bag1.insert("VE280");

 Bag bag2 = bag1;

 return 0;

}

af://n9
af://n11
af://n20

The Rule of the Big 3/5

If you have any dynamically allocated storage in a class, you must follow this Rule of the Big X,
where X = 3 traditionally and X = 5 after c++11 (see std::move()).

Whenever an object owns resources, any resources, not just memory, it should implement 5
methods: A constructor and a destructor, A copy constructor, a move constructor, a copy
assignment operator, and a move assignment operator.

Structure

The rule: Traditionally constructor/destructor/copy assignment operator forms a rule of 3.

If you need one of them, then you need all of them. You should never leave them unsaid
whenever dynamic allocation is involved. Move semantics (std::move()) is a feature available
after C++11, which is not in the scope of this course.

default keyword

If you want to use the version synthesized by the compiler, you can use = default :

class MyClass {

 // Member variables

public:

 MyClass(MyClass &that); // Copy constructor

 MyClass &operator=(const MyClass &that); // Overload '=', assignment

operator

 void detroy(); // Destruct behaviour

 ~MyClass(){detroy();} // Destructor

 // Other member functions omitted

};

Type(const Type& type) = default;

Type& operator=(Type&& type) = default;

af://n24
af://n28
af://n32

Implementation

Usually, we would need to implement some private helper functions removeAll() and

copyFrom() , and use them in the big 3. Consider a Dlist of int type as example.

A destructor

A copy constructor

An assignment operator

Exercise

Recall binary tree and in-order traversal from Project 2. We define that a good tree to be a binary
tree with ascending in-order traversal. Write the deep copy functions for the following codes.

You may use removeAll and insert in your copyAll method.

Your Answer here:

Dlist::~Dlist() {

 removeAll();

}

Dlist::Dlist(const Dlist &l): first(nullptr), last(nullptr) {

 copyAll(l);

}

Dlist & Dlist::operator=(const Dlist &l) {

 if (this != &l) { // why ?

 removeAll();

 copyAll(l);

 }

 return *this;

}

class GoodTree {

 int *op;

 GoodTree *left;

 GoodTree *right;

public:

 void removeAll();

 // EFFECTS: remove all things of "this"

 void insert(int *op);

 // EFFECTS: insert op into "this" with the correct location

 // Assume no duplicate op.

};

af://n35
af://n49

Lecture 18: Dynamic Resizing

Why do we need Dynamic Resizing?

In many applications, we do not know the length of a list in advance, and may need to grow the
size of it when running the program. In this kind of situation, we may need dynamic resizing.

Array Example

When do we use Dynamic Resizing?

When the array is at maximum capacity, we will grow the array. Using grow() method:

The grow method won’t take any arguments or return any values.
It should never be called from outside of the class, so add it as a

private method taking no arguments and returning void.

How to implement a grow() function?

In general, there are four steps:

1. Allocate a bigger array.
2. Copy the smaller array to the bigger one.
3. Destroy the smaller array.
4. Modify elts/sizeElts to reflect the new array.

If the implementation of the list is a dynamically allocated array, we need the following steps to
grow it:

Make a new array with desired size. For example,

Copy the elements from the original array to the new array iteratively. Suppose the original
array is arr with size size .

int *tmp = new int[new_size];

af://n59
af://n60
af://n62
af://n63
af://n70

Replace the variable with the new array and delete the original array. Suppose the original
array is arr :

Make sure all necessary parameters are updated. For example, if the size of array is

maintained, then we can do:

Difference between delete and delete[]

Common selections of new_size

size + 1 : This approach is simplest but most inefficient. Inserting N elements from

capacity 1 needs N(N-1)/2 number of copies.

2*size : Much more efficient than size+1 . The number of copies for inserting N elements
becomes smaller than 2N .

What about even larger (eg: size^2)? Usually not good, for it occupies far too much

memory.

Seems cost a lot to resize the array? But does it happen very often?

Learn more about amortized complexity in VE281/EECS281.

Exercises
1. To ensure a deep copy, what are the three methods that you should provide?

1. _______________________

2. _______________________
3. _______________________

2. For each of the following codes, there might be some problems. Write down the problems
and how to fix them? If there is none, write “None”.

for (int i = 0; i < size; i++){

 tmp[i] = arr[i];

}

delete [] arr;

arr = tmp;

size = new_size;

string *S = new string[3]; //They are PAIRED!!!!!

delete[] S;

string *s = new string;

delete s;

af://n97
af://n99
af://n109

1.

Problem: ______________________

2.

Problem: ______________________

Reference
[1] Yunuo, Chen. VE280 FA2021 RC 7.

[2] Weikang, Qian. VE280 Lecture Slides 2022.

void study() {

 int * ptr = new int(280);

 int study1 = *ptr;

 ptr = new int(215);

 int study2 = *ptr;

 study2 += study1;

 delete ptr;

}

class DoubleSet {

 // OVERVIEW: a mutable set of double numbers

 double *elts; // pointer to dynamic array

 int sizeElts; // capacity of the array

 int numElts; // current occupancy

public:

 DoubleSet &operator=(const DoubleSet &is);

 // other unrelated methods omitted.

};

DoubleSet &DoubleSet::operator=(const DoubleSet &is) {

 delete[] elts;

 sizeElts = is.sizeElts;

 elts = new double[sizeElts];

 for (int i = 0; i < is.sizeElts; i++)

 elts[i] = is.elts[i];

 return *this;

}

af://n129

	VE280 FA22 RC7
	Lecture 17: Deep Copy
	Shallow Copy & Deep Copy
	Motivation
	Example Code
	What is the terrible result?
	What does deep copy do?
	The Rule of the Big 3/5
	Structure
	default keyword
	Implementation

	Exercise

	Lecture 18: Dynamic Resizing
	Why do we need Dynamic Resizing?
	Array Example
	When do we use Dynamic Resizing?
	How to implement a grow() function?
	Difference between delete and delete[]

	Common selections of new_size

	Exercises
	Reference

