
Lecture 15: Invariants
An invariant is a set of conditions that must always evaluate to true at certain well-defined points;
otherwise, the program is incorrect.

Representation Invariant

For ADT, it is called representation invariant.

It describes the conditions that must hold on those members for the representation to correctly
implement the abstraction. These conditions are not naturally preserved, but need your caution
in implementing the class.

Establishing the Invariant

Each method in the class can assume that the invariant is true on entry if:

The representation invariant holds immediately before exiting each method
Each data element is truly private.

Therefore, the class is self-consistent.

Essentially, for each method, you should:

Do the work of the method (implement)
Repair the invariants you broke (if any)

Checker Function

defensive programming: write a private method to check whether all invariants are true (before
exiting, or after entering, each method):

Next, add the following code right before returning from any function that modifies any of the
representation: assert(repOK()) ;
you can write the same line at the beginning of every method too, to check whether the
assumption the method relies on is true.

Exercise 1

How should repOK() be? What invariant should load(..) repair?

bool repOK();

// EFFECTS: returns true if the rep. invariants hold

af://n0
af://n3
af://n6
af://n20

Lecture 16: Dynamic Memory Allocation;
Overloading,Default Arguments;
Destructor

Dynamic Memory Allocation

Types of Variables:

There are basically three types of variables in C++ programs:

Global Variables (static)

Defined outside functions
Lifetime: Their space is set aside before the programs runs (at compile time), and is
reserved until the program terminates.

Local Variables (static)

Defined within a block (basically insides curly brackets {})
Lifetime: Space is set aside when relevent block is entered (at run time), and reserved
until the block is exited.

Dynamic Variables

the compiler doesn't need to know how big it is and how long it lives.
Space is allocated using new, and deallocated using delete by programmer.

Memory Structure:

class buckets{

 unsigned int buckets[MAX_SIZE];//buckets initially empty to be loaded

 unsigned int firstLoadedBucket;//the index of first loaded bucket

 unsigned int bucketLoadedNum;//the number of loaded bucket

 unsigned int loadNum;//the amount of load

 double loadFactor;//(loadNum/MAX_SIZE)

 bool repOK();// EFFECTS: returns true if the rep. invariants hold

 ...

 public:

 void load(unsigned int bucket_index, unsigned int load);

 ...

af://n28
af://n29
af://n30
af://n54

Text stores the code, heap stores dynamic variables and stack stores memory for functions
(including main function and local variables).

When stack and heap use up the big void, the program overflows. How many memory they use is
indicated by a pointer pointing to the top of heap and another pointing to the bottom of stack.

The "Stack" and "Heap" here refers to specific locations in the memory. They are not equivalent to
the data structures called "stack" and "heap", though their behavior is similar.

Dynamic Memory

Why dynamic memory?

Local variables can only be fixed size, we want to change the size at runtime.

This code may be compiled successfully with some compilers. However, it is not allowed in ISO
c++ standard. Some compilers allow this as an extension. You can add -pedantic flag to turn on
the warning.

We don't know the exact lifetime of the objects.

Allocation

int length;

cin >> length;

int arr[length];

af://n59

However, you cannot allocate an array of objects using non-default constructors.
When using new and new[] , following things happens:

1. Allocates space in heap (for one or an array of objects).
2. Constructs object in-place (mainly be calling constructor).
3. Returns the “first” address.

You may remeber malloc and free in the C language. They only deal with the memory while do
nothing to the content in it. That means in C you need to malloc the space and initialize it by hand.
Deallocation
Use delete and delete[] to deallocate single object and arrays respectively.

Memory Leak
The usage of new/delete is very easy. The difficult point is when and where to use them.
Basically, memory leak happens when you lose the address of some dynamic memory (then it
would be impossible for you to delete that memory).

Example:

Each time foo() is called, some memory is occupied and will not be released even after the

program terminates. Gradually, you will drain out all memory of your computer, which is very
bad.

Check Memory Leak

1. valgrind
Command: valgrind --leak-check=full ./program <args>

Function: search for memory leaks and give details of each individual leak.
To install, type the command: sudo apt-get install valgrind

2. fsanitize

compile the program using g++ -o program <file> -fsanitize=address and run.

Type* obj0 = new Type; // Default construction

Type* obj1 = new Type(); // Default construction

Type* obj2 = new Type(arg1, arg2); // Constructor with 2 params

Type* objA0 = new Type[size]; // Default cons each elt

Type* objA1 = new Type[size](); // Same as obj A0

int* a=new int;//see 'int' as a class

int* b=new int(1);

int* c=new int[5];

int* d=new int[5]{0};//[0,0,0,0,0]

// Each time foo() is called, there is new memory allocated.

// And since p is a local variable, each time p will point to a new address

void foo() {int* p = new int(0); /* Code */}

af://n84

Overloaded Constructor and Default Argument

Overloaded Constructor

Functions with same name can have different versions, and compiler tells which function to call
based on the actual argument count and types

For constructor, programmer can choose default initialization (eg. MAXELTS) or sepcialized (eg.
give a size).

Default Argument

There's a easier method, using default argument.

Default argument means when you put in no argument, the function can assume a default
argument

for example, IntSet(int size = MAXELTS); will realize the function of overloaded constructor
with just one function.

Mind that you should put default argument to the end

Also mind that you don't need to write default argument when implementing.

Destructor

Class's member is dynamic

When all the members of a class are static, there's no need to write the destructor, since there's a
default one that help the compiler automatically released memory of the class's members when
the program ends.

However when there are some dynamic members in a class, the dynamic members can't be
automatically released, and that's where we need a destructor function to help us released them
at once.

int add(int a, int b = 0, int c = 1); // OK

int add(in a, int b = 1, int c); // Error

af://n92
af://n93
af://n98
af://n105

Class is dynamic

The destructor can be called automatically when a class's life ends (like main function or other
function ends). But if you dynamically declare a class, it of course should be deleted by
programmer, since a dynamic variable can't be deleted by compiler and its destructor won't be
called.

Exercise 2

How to implement the constructors and the destructor?

class buckets{

 unsigned int *buckets;//dynamic buckets initially empty to be loaded

 unsigned int firstLoadedBucket;//the index of first loaded bucket

 unsigned int bucketLoadedNum;//the number of loaded bucket

 unsigned int loadNum;//the amount of load

 double loadFactor;//(loadNum/MAX_SIZE)

 double maxLoadFactor;//upper bound of loadFactor

 public:

 buckets(unsigned int size=MAX_SIZE, double max_factor=2);

 buckets(unsigned int load; unsigned int index;

 unsigned int size=MAX_SIZE, double max_factor=2);

 ~buckets();

 ...

	Lecture 15: Invariants
	Representation Invariant
	Establishing the Invariant
	Checker Function

	Lecture 16: Dynamic Memory Allocation; Overloading,Default Arguments; Destructor
	Dynamic Memory Allocation
	Types of Variables:
	Memory Structure:
	Dynamic Memory
	Check Memory Leak

	Overloaded Constructor and Default Argument
	Overloaded Constructor
	Default Argument

	Destructor

