
VE280 2022FA RC5
VE280 2022FA RC5

L14: Subtypes; Inheritance; Virtual Functions
Subtypes
How to create subtypes?
Creating Subtypes by C++
Virtual Functions

L15 Interfaces; Invariants
Questions

L14: Subtypes; Inheritance; Virtual Functions

Subtypes

Definition: S is called the subtype of T whenever the instance of an object of type T is expected, an
object of type S can be supplied.

Question: Whether the following type showing in left is the subtype of that is showing right?

How to create subtypes?

1. Add one or more operations.

Example: IntSet and MaxIntSet , where MaxIntSet has an addtional function max() . So,

MaxIntSet is the subtype of InSet .

2. Strengthen the postcondition of one or more operations.

Remark: What are called postcondition here are "EFFECTS" and return type.

Example:

3. Weaken the precondition of one or more operations.

Remark: What are called precondition here are "REQUIRES" and argument type.

double, int

ifstream, istream

int A::f();

 //EFFECTS: return a int.

int B::f();

 //EFFECTS: return a positive int.

int main(){

 int integer = A::f();

 //Since the variable need A() to return an int, it is obviously legal to

return a positive int. So B::f() can replace A::f() here.

 //However, if we actually need a positive integer, B::f() can not be

replaced by A::(), since an integer is not always a positive integer.

}

af://n0
af://n3
af://n4
af://n8

Base Class Member
Type

Inheritance Type Derived Class Member Type

private
public, private,

protected
No permission

public
public, private,

protected
public, private, protected

respectively

protected public, protected protected

protected private private

Example:

Creating Subtypes by C++

Inheritance: Create a subclass of the base class

Remark: If you want the member of the base class to be accessed by the derived class, but you do
not want the outsider to access the member of the bass class, then use protected.

Note: Subclasses may not be subtypes.

Virtual Functions

Motivation: Consider the following situations:

void A::f(string a);

 //REQUIRES: the input string a should be a non-empty string.

void B::f(string b);

 //No specific limitation to b

int main(){

 string str("lkz");

 A::f("lkz");

 //Since the input of A::f() should be non-empty, it will always work if

we replace A::f() with B::f(), since B::f() does not have such limitations.

 //So B is the subtype of A.

}

//Syntax

class son : public father{};

//use ":" to show the inheritance relationship.

//use "public", "private", "protected" to specify the type of inheritance

//base class father has three children (subclasses)

class father{

 public:

 void speak(){

 cout<<"I am Eddard Stark"<<endl;

 }

};

class son1: public father{

 void speak(){

af://n23
af://n49

Then, we can define the corresponding function in the father type as virtual.

This time, when the *role.speak() is called, the compiler will strive to find the real type of role, not
just the base type.

L15 Interfaces; Invariants
Motivation: To be consistent with the definition of ADT, we provide an "interface-only" class as a
base class (Abstract Base Class). In the ABC, we only provide the declaration of some functions,
and we never provide the definition of functions and member types.

 cout<<"I am John Snow"<<endl;

 }

}

class son2: public father{

 void speak(){

 cout<<"I am Arya Stark"<<endl;

 }

}

class son3: public father{

 void speak(){

 cout<<"I am Robb Stark"<<endl;

 }

}

//Then we want to use the pointer of the father type to represent all the three

subtypes as the function input.

void loudspeak(father * role){

 *role.speak();

 //In this domain, however, the role can only be seen as an instance of

"father", but you really want to use function of speak() of son1, son2 or son3.

}

int main(){

 son1 John;

 son2 Arya;

 son3 Robb;

 loudspeak(&John);//This will work due to the replacement principle of

subtype.

 loudspeak(&Arya);

 loudspeak(&Robb);

}

class father{

 public:

 virtual void speak(){

 cout<<"I am Eddard Stark"<<endl;

 }

};

class car{ //There we only provide an abstraction of the "car".

 virtual void run() = 0; //The car can "run"

 virtual void stop() = 0; //The car can "stop"

}

af://n55

Remark: Function with "= 0" ended is called pure virtual function. The class with pure virtual
functions is called abstract class.

Note: You cannot create any instance of an abstract class.

Remark: Typically, you write your interface in a public header file, and write your implementation
(the derived class) in a source file. In that case, the user can get how to use the functions through
the header file, but cannot get the exactly definition. This perfectly fits our requirements of ADT.

Write the following functions to help user get the instance of bus

For multiple instances are needed, use dynamic memory allocation.

Questions
1. What is the output?

class bus{

 int people[10];

 int num;

 int capacity;

 public:

 bus();//constructor

 void run();

 void stop();

}

// header file

car * getCar();

//cpp file

static bus bus210; //This only works for only one instance is needed.

IntSet *getCar(){

 return &bus1;

}

#include <iostream>

using namespace std;

class Foo {

 public:

 void f() { cout << "a"; };

 virtual void g() = 0;

 virtual void c() = 0;

};

class Bar : public Foo

{

 public:

 void f() { cout << "b"; };

 virtual void g() { cout << "c"; };

 void c() { cout << "d"; };

 virtual void h() { cout << "e"; };

};

class Baz : public Bar

{

af://n65

Answer:

 public:

 void f() { cout << "f"; };

 virtual void g() { cout << "g"; };

 void c() { cout << "h"; };

 void h() { cout << "i"; };

};

class Qux : public Baz

{

 public:

 void f() { cout << "j"; };

 void h() { cout << "k"; };

};

int main() {

 Bar bar; bar.g();

 Baz baz; baz.h();

 Qux qux; qux.g();

 Foo &f1 = qux;

 f1.f(); f1.g(); f1.c();

 Bar &b1 = qux;

 b1.f(); b1.c(); b1.h();

 Baz &b2 = qux;

 b2.f(); b2.c(); b2.h();

 return 0;

}

int main() {

Bar bar; bar.g(); // c

Baz baz; baz.h(); // i

Qux qux; qux.g(); // g

Foo &f1 = qux;

f1.f(); f1.g(); f1.c(); // a g h

Bar &b1 = qux;

b1.f(); b1.c(); b1.h(); // b h k

Baz &b2 = qux;

b2.f(); b2.c(); b2.h(); // f h k

return 0;

}

	VE280 2022FA RC5
	L14: Subtypes; Inheritance; Virtual Functions
	Subtypes
	How to create subtypes?
	Creating Subtypes by C++
	Virtual Functions

	L15 Interfaces; Invariants
	Questions

