
VE280 2022FA RC4  
VE280 2022FA RC4

L10: I/O Streams
cin  , cout  & cerr

>> and <<
Stream Buffer
Cerr

Exercise
File Stream
String Stream

L8: Enum
Example

Note
Nice Usage

L9: Program Arguments
L11: Testing

Concepts
Example

Exam Like Exercises
Reference

L10: I/O Streams  

cin  , cout  & cerr  

>> and <<  

In C++, streams are unidirectional, which means you could only cin >>  and cout << .

If we look into cin , it's an object of class istream  (input stream). operator>> (the extraction 

operator) is one of it's member function.

Check std::istream::operator>> , similar for cout  & cerr  ( ostream )

istream& operator>> (bool& val);

istream& operator>> (short& val);

istream& operator>> (unsigned short& val);

istream& operator>> (int& val);

istream& operator>> (unsigned int& val);

istream& operator>> (long& val);

istream& operator>> (unsigned long& val);

istream& operator>> (long long& val);

istream& operator>> (unsigned long long& val);

istream& operator>> (float& val);

istream& operator>> (double& val);

istream& operator>> (long double& val);

istream& operator>> (void*& val);

af://n0
af://n3
af://n4
af://n5


Many type of parameter it takes -> it knows how to convert the characters into values of certain 
type

Return value also a reference of istream  -> it can be cascaded like cin >> foo >> bar >> baz;

Some other useful functions:

Differences:

>>  will read until reaching the next space or \n , and the space and \n  will still be left in the 

buffer. And space and \n  won't be stored into the parameter. 
getline  would read a whole line and discard the \n  at the end of the line directly.  

get() reads a single character, whitespace or newlines.

Stream Buffer  

cout  and cin  streams are buffered (while cerr  is not).

You need to run flush  to push the content in the buffer to the real output.

cout << std::endl   is actually equivalent to cout << '\n' << std::flush

When the buffer becomes full, the program decides to read from cin  or the program exits, the 

buffer content will also be wrriten to the output.

Cerr  

There is another output stream object defined by the iostream library called cerr .

By convention, programs use the cerr  stream for error messages. 

On  JOJ, cerr  message is printed out in stderr  block and is not counted for output.

This stream is identical in most respects to the cout  stream; in particular, its default output is 

also the screen. Its output redirection can be used as ./program 2><filename>  e.g. ./program 

2>test_error.txt

Exercise  

Redirect the compile error message of a Makefile into a.txt .

File Stream  

istream& getline (istream& is, string& str);

std::ios::operator bool // member of istream -> if(cin), while(cin)

istream& get (char& c); // member of istream

af://n22
af://n27
af://n32
af://n35


Question:  Is anything missing in the above program?

Hint 1: "Deductions will follow!" "Really?"

Hint 2: https://en.cppreference.com/w/cpp/io/basic_fstream

String Stream  

L8: Enum  
Enum is a type whose values are restricted to a set of integer values. Advantages:

Use less memory than std::string

More readable than const int  or char
Limit valid value set, so compiler help you find spelling mistakes.

Example  

#include <fstream>

std::ifstream iFile; // inherit from istream

std::ofstream oFile; // inherit from ostream

iFile.open("myText.txt");  // if unsuccessful to open, iFile would be in failed 

state, if(iFile) returns false. But member function open() has void return 

type!!!

iFile >> bar;

while(getline(iFile, line)) // simple way to read in lines.

oFile << bar;

#include <sstream>

istringstream iStream; // inherit from istream

iStream.str(line); // assigned a string it will read from, often used for 

getline

iStream >> foo >> bar;

iStream.clear(); // Sometimes you may find this useful for reusing iStream

ostringstream oStream; // inherit from ostream

oStream << foo << " " << bar;

string result = oStream.str(); // method: string str() const;

#include <iostream>

enum A {

    a, b, c=-1, d, e=5, f, g=a + e, h

};

int main() {

    std::cout << a << ' ' << b << ' ' << c << ' ' << d << ' '

        << e << ' ' << f << ' ' << g << ' ' << h << '\n';

    // Output is 0 1 -1 0 5 6 5 6

    return 0;

}

https://en.cppreference.com/w/cpp/io/basic_fstream
af://n42
af://n45
af://n54


By default the enum value starts from 0, and increments for each value

But you can also assign any integer value to them
Values in enum (a, b, c,…) can be treated as global const int

Can be compared (<, >, ==, !=)

Note  

Since enum A is a new type, std::cin  and std::cout  cannot identify them. You need to cast the 

enum variable to int before print it.

Nice Usage  

Enum type can serve as array index (same as const int ). More to come in later projects.!

L9: Program Arguments  
Write a main function that takes program arguments:

Or in a way easier to memorize:

Both are acceptable.

• arg  for argument, c  for count, v  for value or vector.

#include <iostream>

enum A {

    a, b, c=-1, d, e=5, f, g=a + e, h

};

int main() { 

    A A1=a; 

    std::cout << A1 << '\n'; //wrong, but works

    std::cout << static_cast<int>(A1) << '\n'; //correct

    return 0;

}

#include <iostream>

enum suit {

    DIAMOND,SPADE,HEART,CLUB

};

const char* suit_name[4] = {"DIAMOND", "SPADE", "HEART", "CLUB"};

int main () {

    std::cout << suit_name[DIAMOND] << '\n'; 

    std::cout << suit_name[SPADE] << '\n';

}

int main(int argc, char *argv[]) {

    /* code here */

}

int main(int argc, char ** argv) {

    /* code here */

}

af://n67
af://n70
af://n74


• argv  is a 1-D array of c-strings (equivalent to char*), so we need two \*  and get char** argv

• You can consider argv  as a pointer to (pointer to char ), or an array of (pointer to char )

L11: Testing  

Concepts  

Difference between testing and debugging 

Testing: discover a problem (and more problems)
Debugging: fix a problem ( and at the same time create new problems)

Five Steps in testing:

Understand the specification (Design requirement)
Identify the required behaviors (Specification boil down; abstract; Party A)
Write specific tests (Simple+ Normal+ Nonsense )
Know the answers for those tests (The correct output; concrete; Party B)
Stress tests (large and long running )

Who knows... this is also inside the scope of the exam.!!!

Example  

Step 1. Specification

Step 2. Behavior

Normal: return _____  for input _____  

Boundary: return _____  for input _____  

Nonsense: return _____  for input _____  
Step 3: Test Cases

Exam Like Exercises  
1. Consider the following codes:

Write a function to calculate factorial of non-negative integer, return -1 

if the input is negative.

void testNormal() {

    assert(fact(5) == 120);

}

void testBoundary() {

    assert(fact(0) == 1);

}

void testNonsense() {

    assert(fact(-5) == -1);

}

af://n84
af://n85
af://n105
af://n122


If the user input

with a newline. Then what's the value of each variable?

i1  = _____ ,  i2  = _____ ,  d  = _____ ,  s  = _____
2. Write two statements  that first try to open a.txt , then if the file is not opened 

successfully, assert the program.

3. What is a partial function? Can you give an example of a partial function and explain why  it is 
a partial function? Whenever possible, it is much better to write a complete function instead 
of a partial one. Why? 

 

4. A function args_to_list   will transfer program arguments into list_t . Complete the 

following functions:

5. This is a function in your project 2, write 3 different boundary cases.  Each case should test a 
different boundary situation. For each test case, you must  provide: a description of the test 
case, the expected behavior for a correct implementation of the  function, and why the case 
is a boundary test case. Use the provided example as format guideline. 

int i1,i2;

double d;

std::string s;

std::cin >> i1 >> s >> d >> i2;

20.22 -10 17.20 280 rc.!

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

list_t args_to_list(________(a)_________);

// Implementation Omitted

int main(________(b)_________) {

    list_t arg_list = args_to_list(______(c)_______);

    return 0;

}



Your answers here:

Reference  
[1] Weikang, Qian. VE280 Lecture 8-11.

[2] Jiajun, Sun. VE280 Midterm Review Slides. 2021FA.

[3] Pingchuan, Ma. VE280 RC 5. 2021 FA.

list_t insert_list(list_t first, list_t second, unsigned int n){

/*

// REQUIRES: n <= the number of elements in "first".

//

// EFFECTS: Returns a list comprising the first n elements of

//          "first", followed by all elements of "second",

//           followed by any remaining elements of "first".

//

// EAXMPLE: insert (( 1 2 3 ), ( 4 5 6 ), 2) returns ( 1 2 4 5 6 3 ).

//            

*/

(1)_________________________________________________________________________

(2)_________________________________________________________________________

(3)_________________________________________________________________________

af://n144

	VE280 2022FA RC4
	L10: I/O Streams
	cin , cout & cerr
	>> and <<
	Stream Buffer
	Cerr
	Exercise


	File Stream
	String Stream

	L8: Enum
	Example
	Note

	Nice Usage

	L9: Program Arguments
	L11: Testing
	Concepts
	Example

	Exam Like Exercises
	Reference


