
Lecture 5: const Qualifier
Const qualifier is used to avoid changing. Any changing to const variants will be warned by

compiler.

NOTE: pointer to const type is a little bit special.

Example:

Only pointer to const variable like P can be not initialized when declared.
The const only works on the variable it declares: can point to non-const variants & no

changing through that pointer only.

Variants of const in C++
The const keyword in C++ can be used alongside different data entities of programming such as:

Data variables
Function arguments
Pointers
*Class function members
Reference

1. Const & Data variables

1) General Case 1

Error example: assignment of read-only variable

What if I do int* p = &A ?

int a = 0;

const int b; //x

const int c=0; //√

const int *P; //√

P = &a；

*p=1; //x

a=1; //√

const data-type variable = value;

#include<iostream>

using namespace std;

int main()

{

 const int A = 10;

 A += 10;

 cout << A;

}

af://n0
af://n11
af://n24
af://n25

2) Const Global

Say when we declare a string for jAccount username, and want to ensure that the max size of the
string is 32.

This is bad, because the number 32 here is of bad readability.

This is where we need constant global variables.

For good coding style, use UPPERCASE for const globals.

2. Const & Function Arguments

Error example: assignment of read-only parameter

int main(){

 char jAccount[32];

 cin >> jAccount;

 for (int i = 0; i < 32; ++i){

 if (jAccount[i] == '\0'){

 cout << i << endl;

 break;

 }

 }

}

const int MAX_SIZE = 32;

int main(){

 char jAccount[MAX_SIZE];

 cin >> jAccount;

 for (int i = 0; i < MAX_SIZE; ++i){

 if (jAccount[i] == '\0'){

 cout << i << endl;

 break;

 }

 }

}

data-type function(const data-type variable)

{

 //body

}

int add(const int x)

{

 x=x+100;

 return x;

}

af://n30
af://n38

Type Coercion

The following are the Const Prolongation Rules.

const type& to type& is incompatible.

const type* to type* is incompatible.
type& to const type& is compatible.

type* to const type* is compatible.

In one word, only coercion from non-const to const is allowed.

Exercise:

Consider the following example:

3.Const & Pointer
ONE PRINCIPLE：

const applies to the thing left of it. If there is nothing on the left then it applies to
the thing right of it.

Exercises: What do these const apply to? They are all valid!

void reference_me(int &x){}

void point_me(int *px){}

void const_reference_me(const int &x){}

void main() {

 int x = 1;

 const int *a = &x;

 const int &b = 2;

 int *c = &x;

 int &d = x;

 // Which lines cannot compile?

 int *p = a; // x

 point_me(a); // x

 point_me(c);

 reference_me(b); // x

 reference_me(d);

 const_reference_me(*a);

 const_reference_me(b);

 const_reference_me(*c);

 const_reference_me(d);

}

const int* a // a pointer to a constant integer

int const * a // a pointer to a constant integer

int* const a // a constant pointer to an integer

const int* const a // a constant pointer to a constant integer

int const * const a // a constant pointer to a constant integer

af://n42
af://n58
af://n65

*4.Const & Class Function Member

For Foo() , int a becomes const int a and int get_a() becomes int get_a() const .

This is because " const " after Foo() works on pointer this , which is a pointer to this class. So
you cannot change data members of this class but you can still change variables beyond this
class.

5. Const & References

Const Reference vs Non-const Reference

There is something special about const references: (IMPORTANT!!!)

Const reference are allowed to be bind to right values;
Normal references are not allowed to.

Exercises:

Consider the following program. Which lines cannot compile?

Normally, if a const reference is bind to a right value, the const reference is no difference to a
simple const. b and c is similar.

const Class object;

class MyClass

{

 int a;

 void Foo() const; // function member

 int get_a();

 MyClass(int _a);

};

int main(){

// Which lines cannot compile?

int a = 1;

const int& b = a; //any left value is right value

const int c = a;

int &d = a;

const int& e = a+1;

const int f = a+1;

int &g = a+1; // x

int &g = b; // x

b = 5; // x

c = 5; // x

d = 5; //a = 5

}

af://n65
af://n69
af://n70

Why do we need const references or pointers ?

See the following example.

Reasons to use a constant reference:

Passing by reference or pointer -> avoids copying;
const -> avoids changing the structure.

Advantage of const reference over pointer:

Passing rvals directly.

Const and Typedef

Type Definition

When some compound types have long names, you probably don’t want to type them all. This is
when you need typedef. Typedef is just an alias name. It will improve the portability and
readability of your code.

Typedef may nest.

Exercise:

class Large{

 // I am really large.

};

int utility(const Large &l){

 // ...

}

int utility(const Large *l){

 // ...

}

add(1,2);

frequency("absdfjad", "a");

typedef real_name alias_name

typedef const int_ptr_t Type1;

typedef const_int_t* Type2;

typedef const Type2 Type3;

int main(){

 // Which lines cannot compile?

 int a = 1;

 int b = 2;

 Type1 ptr4 = &a;

 Type2 ptr5 = &a;

 Type3 ptr6 = &a;

 *ptr4 = 3;

 ptr4 = &b; // x

af://n244
af://n93
af://n94

type1=const ptr to int, type2=ptr to const int, type3=const_ptr to const_int

Lecture 6: Procedural Abstraction
Abstraction
Abstraction is the principle of separating what something is or does from how it does it.

Properties

Provide details that matters (what)
Eliminate unnecessary details (how)

Different roles in programming

The author: who implements the function
The client: who uses the function

In individual programming, you are both.
Example of client: you use cout to output, which is written by author of C++. You don't need to
worry about how cout works.

2 types of abstractions

Data Abstraction
Procedural Abstraction

The product of procedural abstraction is a procedure, and the product of data abstraction is an
abstract data type (ADT).

Focus: Procedural Abstraction
Functions are mechanism for defining procedural abstractions.
Difference between abstraction and implementation:

Abstraction tells what and implementation tells how.
The same abstraction could have different implementations.

There are 2 properties of proper procedural abstraction implementation:

Local: the implementation of an abstraction does not depend of any other abstraction
implementation.
Substitutable: Can replace a correct implementation with another.

 *ptr5 = 3; // x

 ptr5 = &b;

 *ptr6 = 3; // x

 ptr6 = &b; // x

}

af://n101
af://n102
af://n104
af://n117
af://n328
af://n124

Composition

Type signature
Specification

Type signature

The type signature of a function can be considered as part of the abstraction.
Type signature includes function name, number of arguments and the type of each
argument.
Type signature is also known as function prototype.
Two overloaded functions must not have the same signature.
The return type is not part of a function's signature

Example: Do these two functions have the same signature ?

Specifications

There are 3 clauses in the specification comments:

REQUIRES: preconditions that must hold, if any
MODIFIES: how inputs will be modified, if any
EFFECTS: what the procedure is computing

Completeness of functions are defined as follows:

If a function does not have any REQUIRES clauses, then it is valid for all inputs and is
complete.
Else, it is partial.

You may convert a partial function to a complete one by exception handling.

Note: Specifications are just comments. You cannot really prevent clients from doing stupid
things, unless you use exception handling. While in VE280, you can always assume the input is
valid if there is a REQUIRES comment.

int Divide (int n, int m) ;

double Divide (int a, int b) ; //x

main(){

 ...

 a=Divide(n,m);

}

void log_array(double arr[], size_t size)

// REQUIRES: All elements of `arr` are positive

// MODIFIES: `arr`

// EFFECTS: Compute the natural logarithm of all elements of `arr`

{

 for (size_t i = 0; i < size; ++i){

 arr[i] = log(arr[i]);

 }

}

af://n137
af://n143
af://n158
af://n176

Lecture 7: Recursion; Function Pointers;
Function Call Mechanism

Recursion
Recursion simply means to refer to itself. Its idea is to divide and conquer. It will loop until the
boundary, or base case, is reached.
For any recursion problem, you may focus on the 2 compositions:

Base cases: There is (at least) one “trivial” base or “stopping” case.
Recursive step: All other cases can be solved by first solving one smaller case, and then
combining the solution with a simple step.

A trivial example would be:

Sometimes it is hard to implement a recursive function directly due to lack of function arguments.
In this case, you may find a helper function useful.
Instead of

One may use

where recursion_helper keeps updating the extra arguments, eg. is_palindrome_helper(string

s, int begin, int end) in lecture slides keeps increasing begin and deceasing end .

i

nt factorial (int n) {

// REQUIRES: n >= 0

// EFFECTS: computes n!

 if n == 0

 return 1; // Base case

 else

 return n * factorial(n-1); // Recursive step

}

recursion(...){

 ...

 recursion(...)

 ...

}

recursion(...){

 ...

 recursion_helper(...)

 ...

}

recursion_helper(...){

 ...

 recursion_helper(...)

 ...

}

af://n176
af://n177
af://n191

Function Pointers
Variables that store the address of functions are called function pointers. By using them, we could
pass functions into functions, return them from functions, and assign them to variables.

Consider when you only need to change one step in a larger function, like changing “adding” all
elements in the matrix to “multiplying” all the elements. It is a waste of time and space to repeat
the code, thus programmers would consider using a function pointer.

Mind the difference between function pointer and other pointer. Do not use "&" when assigning
and do not use "*" when calling. (Although they actually both work, it is a convention and it is
easier.) You can think of assigning as, for example, telling compiler to substitute foo with avg

when codes call foo .

Function Call Mechanism
To fully understand function call mechanism, you need to understand the memory organization
of system, which is beyond the scope of VE280 (Learn more about it in VE370). For now, you only
have to get familiar with the concept of call stack.
At each function call, the program does the following:

1. Evaluate the actual arguments.
For example, your program will convert y = add(1*5, 2+2) to y = add(5, 4) .

2. Create an activation record (stack frame)
The activation record would hold the formal parameters and local variables.
For example, when int add(int a, int b) { int result = a+b; return result; } is
called, your system would create an activation record to hold:
○a , b (formal parameters)
○result (local variable)

3. Copy the actual values from step 1 to the memory location that holds formal values.
4. Evaluate the function locally.
5. Replace the function call with the result.

For the same example, your program will convert y = add(5, 4) to y = 9 .

int avg(int arr[], size_t size) {

 int average = 0;

 for (size_t i = 0; i < size; i++){

 average += arr[i];

 }

 average /= size;

 return average;

}

int get_stats(int arr[], size_t size, int (*foo)(int[], size_t)){

 ...

 foo(arr, size);

 ...

}

int main(){

 int arr[] = {1,2,3,4,5};

 cout << get_stats(arr, 5, min) << endl;

 cout << get_stats(arr, 5, max) << endl;

 cout << get_stats(arr, 5, avg) << endl;

}

af://n191
af://n196

6. Destroy the activation record.

Typically, we come across situations with multiple functions are called and multiple activation
records are to be maintained. To store these records, your system applies a data structure called
stack.

Actual parameters and formal parameters

Actual parameters: what you fill in the brackets to call the function. They exist outside the
called function.
Formal parameters: what are used in called function. They have same value with actually
parameters (copying), but occupy different memory and only exist in call stack and are only
used by the function. After the function calling, they are destroyed.

Example

Changing formal parameters will not affect actual parameters.
Passing pointer/reference: outside variables will be modified

Credit
2021 RC slides
Lecture 5, 6, 7

int add(int x, int y){...}

main(){

 int c, a=10, b=20;

 c=add(a,b);//Actual parameters:a, b; Formal parameters:x, y

}

af://n212
af://n226

	Lecture 5: const Qualifier
	Variants of const in C++
	1. Const & Data variables
	1) General Case 1
	2) Const Global

	2. Const & Function Arguments
	Type Coercion

	3.Const & Pointer
	*4.Const & Class Function Member
	5. Const & References
	Const Reference vs Non-const Reference
	Why do we need const references or pointers ?

	Const and Typedef
	Type Definition

	Lecture 6: Procedural Abstraction
	Abstraction
	Properties
	Different roles in programming
	2 types of abstractions

	Focus: Procedural Abstraction
	Composition
	Type signature
	Specifications

	Lecture 7: Recursion; Function Pointers; Function Call Mechanism
	Recursion
	Function Pointers
	Function Call Mechanism
	Actual parameters and formal parameters

	Credit

