
VE280 2022FA RC2
VE280 2022FA RC2

L3: Developing Programs
Compilation Process
Use g++ to Compile Multiple Resources
Header File and Header Guard
Makefile

L4 Review of C++ Basics
Basic Concepts
lvalue and rvalue
Function declaration and definition
Reference
Pointers
Structs

Exercises

L3: Developing Programs

Compilation Process

Compilation process in Linux contains three parts:

Preprocessing: The codes with # starts will be implemented.

such as: #define , #include , #ifdef

Compiler: Compiles the .c / .cpp file into object code.

The .c / .cpp files will be compiled to .o .

Linker: Links object files into an executable.

.o files will be linked to an executable file.

Use g++ to Compile Multiple Resources

Three files class.cpp , function.cpp and main.cpp in your directory.

The simplest way to compile them is:\
g++ -o [name] class.cpp function.cpp main.cpp ,

where [name] can be replaced by any name you want.

The complete compile process should be:

g++ -c class.cpp Compile class.cpp to class.o

g++ -c function.cpp Compile function.cpp to function.o

g++ -c main.cpp Compile main.cpp to main.o

g++ -o [name] class.o function.o main.o Link .o files to an executable file named
[name] .

Remark: The preprocessing part is implemented automatically by g++ .

af://n0
af://n3
af://n4
af://n22

Question: Files existing in current directory?

Comment: The benefit of dividing the compile process apart is that if the project is very large and
only a small fraction of the codes are changed, we do not have to compile them again. We only
have to recompile the files which are not change and will save a lot of time and resources.

Header File and Header Guard

Header file: used to contain the function or class declarations.
Remark：You don't need to add the header files in the compiling commands. This is
because the header files all already included in the preprocessing part by #include .

How to solve? :When we develop a large project where some header files are included for many
times in many files.

For example, if #include "class.h" in both main.cpp and function.cpp , the header file

class.h is included twice.

 This may cause multiple definitions of the classes or functions defined in the header file, which
will lead to tough problems.

Header guard: used to avoid the above situation.

class.h :

Remark: #ifndef VAR is a conditional diretive. Like the conditional statement in c++, the directive

will test whether VAR is defined in the environment. If not, the body code will be implemented
until the #endif . Different from the conditional statement, #ifndef and #ifdef are always

implemented in the preprocessing part.

Question: How to name VAR for different header files?

Comment:
For the first time when class.h is included, the #ifndef CLASS_H will return true and the
environmental variable CLASS_H will be defined. Then the body codes will be implemented until

the #endif .

For the second time when the class.h is included, since the variable CLASS_H already exists in

the environment, #ifndef CLASS_H will return false and the body codes will not be implemented
twice.

You should always write the header guard when you write your own header files.

Makefile

Makefile: used to write all the commands during the compile process together in a file.

Makefile :

#ifndef CLASS_H

#define CLASS_H

CODE BODY...

#endif

af://n33
af://n49

How the makefile constructed:

Use : to link the demand file and dependent files.

Use a <tab> start command to create the demand file from the dependent files.
Always switch the line between two demands.
You can add environmental variables in front of a makefile (optional).

How to use a makefile:

Type make to implement the first demand of makefile.

Type make [demand name] to implement a specific demand

L4 Review of C++ Basics

Basic Concepts

Built-in data types:
int , double , float , char , string .

Question: How many memories does an int variable take? How many doese a char ?

Input and output by "stream":
cout<<"hello world"<<endl , cin>>[variables]

Operators:

Arithmetic: + , - , * , /
Comparison: >= , ==

x++ or ++x

Flow: >> , <<
Branch:

if/else
switch/case

Loop:

while
for

main: main.o class.o function.o

 g++ -o main main.o class.o function.o

class.o: class.cpp

 g++ -c class.cpp

main.o: main.cpp

 g++ -c main.cpp

function.o: function.cpp

 g++ -c function.cpp

clean:

 rm -f main *.o

af://n70
af://n71

lvalue and rvalue

lvalue: An expression which may appear as either the left-hand or right-hand side of an
assignment.

rvalue: An expression which may appear on the right- but not left-hand side of an
assignment

Common lvalues: local variables, return type of "++x", *ptr, ptr[index].
Common rvalues: constant, (x+y), return type of "x++" .
Question: What is the result of x ?

Function declaration and definition

Declaration: should appear before the function is called.

Syntax:

Definition: can appear after the function is called.

Syntax:

Reference

Reference: an important feature of c++.

We can define a variable as a reference of an existing variable. For example:

Comment: Reference is just like the pointer, which means if we change the value of b , the value

of a will also be changed.

Question: Are the following codes correct? What are the values of a , b and ref .

x = 3;

++x = x;

//x++ = x;

Return_Type Function_Name(Parameter_List);

//comment

Return_Type Function_Name(Parameter_List)

{

 //function body

}

//comment

int a = 1;

int &b = a;

int a = 3,b = 1;

int &ref = a;

&ref = b;

af://n104
af://n118
af://n129

pass the value by reference to a function, like:

If we call the function f(b) , the function will define a as the reference of b . If a is changed in
the function, the value of b will also be changed. You should notice that iF b is the name of an

array and f is written as:

The total array is passed by reference to the function and will be changed by the function.

Pointers

Some functions of pointer can be replaced by reference.
Still very important in the dynamic memory allocation.

Structs

A set of variables.
What is the total memory of a stuct variable?
How to declare and define a struct? How to create a struct variable?
How to access a struct pointer's member attributes?

Exercises
Write a struct Complex in file complex.h , which contains two int called real and imag .

Write 2 functions.
Complex complexAdd(Complex a, Complex b) , which return the addition of two complex

numbers.
void complexIncre(Complex &a) , which add the real and imaginary part of a by 1.

You should write the function declaration and definition apart, in header file function.h and cpp

file function.cpp respectivley. Remember to write header guard.

Then, write main.cpp which can scan the four integers by user and form 2 complex variables a
and b . Then, output complexAdd(a, b) and complexIncre(a) . For example, the user input "1 2

3 4", the output should be "4+6i 2+3i".

Then, write a makefile and obtain the executable file.

int &ref = 3;

int a = 3,b = 1;

int &ref = a;

ref = b;

void f(int &a){

 a*=2;

}

void f(int a[])

af://n145
af://n151
af://n161

	VE280 2022FA RC2
	L3: Developing Programs
	Compilation Process
	Use g++ to Compile Multiple Resources
	Header File and Header Guard
	Makefile

	L4 Review of C++ Basics
	Basic Concepts
	lvalue and rvalue
	Function declaration and definition
	Reference
	Pointers
	Structs

	Exercises

