
VE280 2022FA RC1
VE280 2022FA RC1

Introduction:
Prerequisites:
Tips

L2: Intro to Linux
Shell/Terminal
Basic Command
Advanced Command
IO Redirection
Linux File System
File Permissions

L3: Compile Program
Header Guard
g++

Compilation Process
Appendix: Coding Style

Good coding style
Google C++ style guide

Useful Tool
Installation (need python installed first)
Basic usage
Need help?

Bad coding style
Exam-Like Exercises:
References:

Introduction:

Prerequisites:

C++ editor

GNU g++ installed

Linux development environment (REQUIRED!!)

Linux in virtual machine
WSL
Dual Boot
MacOS (not recommended but acceptable)

(Not for now) install valgrind

(Optional) know how to use git

sudo apt-get install valgrind

af://n0
af://n3
af://n4

Tips

Lectures: Attend lectures and memorize details in the slides
Projects: Start early and pay attention to code quality
Exams: Get used to write piece of codes on paper

L2: Intro to Linux

Shell/Terminal

The program that interprets user commands and provides feedbacks is called a shell. Users
interact with the computer through the shell. And Terminal provides an input and output
environment for commands

The general syntax for shell is executable_file arg1 arg2 arg3

Arguments begin with - are called ”switches” or ”options”;

one dash - switches are called short switches, e. g. -l , -a . Short switch always uses a

single letter and case matters. Multiple short switches can often be specified at once. e.
g. -al = -a -l .
Two dashes -- switches are called long switches, e. g. --all , --block-size=M . Long

switches use whole words other than acronyms.
For many programs, long switches have its equivalent short form, e. g. --help = -h

Basic Command

The followings are really important!

man <command> : display the manual for a certain command (very useful!)

pwd : print the path of current working directory

cd <directory> : change directory

ls <directory> : list the files under the directory

Arguments:

no argument, list the working directory (equivalent to ls .)
If the argument is a directory, list that directory (ls <directory>)

Optional:

-a : list all, including hidden ones

-l : list in long format

mkdir <directory-name> : make directory

rmdir <directory-name> : remove directory

Only empty directories can be removed successfully.
touch <filename> : create a new empty file

rm <files> : remove the files

Optional:

-i : prompt user before removal, and put it into ~/.bashrc
-r : Deletes files/folders recursively. Folders requires this option, e. g. (rm -r

testDir/)

-f : Force remove. Ignores warnings.

af://n28
af://n36
af://n37
af://n51

⚠ This is DANGEROUS. See the famous bumblebee accident.

cp <source> <destination> : copy

-r Copy files/folders recursively. Folders requires this option.

Source Destination Result

copy the content of file1 into file2

copy the file into a directory

 copy two files into one directory

Not allowed

 (exist) copy dir1 inside dir2

 (not exist) copy dir1 as dir2

Variations:

mv <source> <destination> : move

Exercise: Can you make a similar table as above?
cat <file1> <file2> ... : concatenate

Advanced Command

Not saying that they are not important! Still possible to exist in exam! The followings serve as a
documentation that you may refer to.

less <file1> <file2> : display the content of the files

Less is a program similar to more, but it has many more features.
Less does not have to read the entire input file before starting, so with large input files it
starts up faster than text editors like vi.
quit less : press q
go to the end of the file: press G (shift+g ? go to beginning?)

search: press / , then enter the thing to be searched, press n for the next match (N ?)

*multiple files: enter :n to view the next file, enter :p to view the previous one
diff <file1> <file2> : Compare difference between two files

This command is important for you project!

If there are differences: lines after “<” are from the first file; lines after “>” are from the
second file.

In a summary line: c : change; a : add; d : delete

-y Side by side view

-w Ignore white spaces (space, tab)

return value: 1 if the same, 0 if not

nano and gedit : basic command line file editor

 if !(diff out1 out2 > diff); then

 echo "\033[31m Wrong Answer! \033[0m"; exit;

https://github.com/MrMEEE/bumblebee-Old-and-abbandoned/issues/123
af://n143

Advanced editors like vim and emacs can be used also.

Auto completion: type a few characters, then press Tab

single match: complete the remaining
multiple match: list all candidates

sudo apt-get install : install a program

sudo command: execute command as a superuser, and requires you to type your
password.
Editing read-only file: sudo vim <file>

sudo apt-get autoremove : remove a program

IO Redirection

Now, this is important!!

Most command line programs can accept inputs from standard input (keyboard by default) and
display their results on the standard output (display by default).

executable < inputfile : Use inputfile as stdin of executable

executable > outputfile：Write the stdout of executable into outputfile

Note this command always truncates the file
Outputfile will be created if it is not already there

executable >> outputfile : Append the stdout of executable into outputfile

They can be used in one command line. Like executable < inputfile > outputfile .

exe1 | exe2 Pipe. Connects the stdout of exe1 to stdin of exe2.

e. g., ./add < squareofsum.in | ./square > squareofsum.out

Need more help?

Try man bash and search by typing /redirect .

Linux File System

Directories in Linux are organized as a tree. Consider the following example:

Remember the following:

/ //root

├── home/ //users's files

 ├── username1

 ├── username2

 ├── username3

 └── ...

├── usr/ //Unix system resources

 ├── lib

 └── ...

├── dev/ //devices

├── bin/ //binaries

├── etc/ //configuration files

├── var/

└── ...

af://n200
af://n224

root: /

The top most directory in Linux filesystem
What will happen if you cd .. at root directory?

home: ~

Linux is multi-user. The home directory is where you can store all your personal
information, files, login scripts
In Linux, it is equivalent to /home/

current: .

parent: ..

More can be find here: https://ipcisco.com/lesson/linux-file-system

File Permissions

The general syntax for long format is:

<permission> <link> <owner> <group> <size>(in bytes) <modified_time> <file_name>

In total, 10 characters for permission syntax:

char 1: Type. - for regular file and d for directory.
char 2-4: Owner permission. r for read, w for write, x for execute.

char 5-7: Group permission. r for read, w for write, x for execute.

char 8-10: Permission for everyone else. r for read, w for write, x for execute.

As you can imagine, the permission goes down from owner -> group -> anyone else.

L3: Compile Program

Header Guard

Notes: If ADD_H has not been defined before, #ifndef succeeds and all lines up to #endif are

processed. Otherwise, #ifndef fails and all lines between #ifndef and #endif are ignored.

What will happen for the following two header files, with/without header guard in add.h?

my_project1.h

my_project2.h

//add.h

#ifnedf ADD_H // test whether ADD_H has not been defined before

#define ADD_H

int add(int a, int b);

#endif

#include "add.h"

...

#include "add.h"

#include "my_project1.h"

https://ipcisco.com/lesson/linux-file-system
af://n248
af://n262
af://n263

Including of a header file more than once may cause multiple definitions of the classes and
functions defined in the header file.

With a header guard, we guarantee that the definition in the header is just seen once.

g++

This is a simple review for vg101/vg151.

Compile in one command: g++ -o program source1.cpp source2.cpp . (header files don't need

to be included)

Run the program: ./program

Some options for g++:

-o <out> Name the output file as . Outputs a.out if not present.

-std= Specify C++ standard.
-Wall Report all warnings. Do turn -Wall on during tests

Compilation Process

More to come in next RC~

Source.cpp

Preprocessor

Preprocessed Source.cpp

Compiler

Source Object.o

Linker

Binary Executable

af://n273
af://n285
af://n288

Appendix: Coding Style

Good coding style

Meaningful variable names;
Consistent indentation;
Well tested, documented and commented;
Rule of D-R-Y: Don’t repeat yourself;

The following is a good function example.

Google C++ style guide

Link: https://google.github.io/styleguide/cppguide.html

Some rules:

The #define Guard

Inline Functions < 10 lines
Forward declarations
......

Useful Tool

cpplint is a tool to test whether your code follow the google C++ style. And usually... it would say
your code quality is really bad...

class Student{

 // represents a JI student.

 string name;

 string major;

 int stud_id;

 bool graduated;

public:

 Student(string name="default", string major="ece", int stud_id=0, bool

graduated=false);

 // EFFECTS : create a new student.

 bool compMajor(const Student &stud) const;

 // EFFECTS : return true if "this" student has the same major as "stud",

 // return false otherwise.

 bool hasGraduated() const;

 // EFFECTS : return true if "this" student has graduated,

 // return false otherwise.

 void changeMajor(string new_major);

 // MODIFIES : "major",

 // EFFECTS : set "major" to "new_major".

};

af://n288
af://n289
af://n301
https://google.github.io/styleguide/cppguide.html
af://n313

Installation (need python installed first)

Basic usage

Need help?

Bad coding style

Vague variable names;
Arbitrary indentation;
Put all the implementation into main function.
Repeat part of your code or have codes of similar function;
Long function. Say 200+ lines in a one function;
Too many arguments for one function. Say functions of 20+ arguments;

The following is a bad function example.

Exam-Like Exercises:
The Linux Command Part takes 16 / 100 (1/6) in last year's midterm. The followings are typical
exercises for the exam:

1. Rename the folder VG101 into VE280 . Assume VE280/ does not exist at first.

2. List all the files(including hidden files) under home directory

3. Compile the source files main.cpp , add.cpp , add.h into executable file main

4. Copy all the content of a.txt to b.txt , without use cp

pip install cpplint

cpplint p1.cpp

cpplint --help

int poly_evaluation(int x, int *coef, unsigned int d)

{

 int r = 0, p = 1;

for(int i = 0; i<= d; i++){

 r += coef[i] * p;

 p *= x;}

 return r;}

af://n315
af://n317
af://n319
af://n321
af://n337

5. Remove the non-empty directory VE280/ by force

6. Create an empty folder VE280/ in the parent working directory

7. Compare two files 1.cpp and 2.cpp and save the result in a file called result.txt

Feel really easy? Then you should have no problem in the exam for this part!!! 😄

References:
 [1] Weikang, Qian. VE280 Lecture 1-3.

 [2] Pingchuan Ma. VE280 RC1. 2021 FA.

af://n362

	VE280 2022FA RC1
	Introduction:
	Prerequisites:
	Tips

	L2: Intro to Linux
	Shell/Terminal
	Basic Command
	Advanced Command
	IO Redirection
	Linux File System
	File Permissions

	L3: Compile Program
	Header Guard
	g++
	Compilation Process

	Appendix: Coding Style
	Good coding style
	Google C++ style guide
	Useful Tool
	Installation (need python installed first)
	Basic usage
	Need help?

	Bad coding style

	Exam-Like Exercises:
	References:

