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Review VII(Slides 458 - 521)
Group Theory

This is the most difficult part!
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Why group theory?
Group theory is soooooo abstract. Why we need it?

From GPT:
Philosophical view of Number theory: Group theory is used to
study properties of numbers and explore topics such as modular
arithmetic, Diophantine equations, and primality testing.
Particle physics: Group theory is crucial in the field of particle
physics, particularly in the study of the fundamental forces and
particles. Symmetry groups, like the Standard Model gauge group,
describe the interactions between particles.
Geometry: Group theory is used to study the symmetries and
transformations of geometric objects, leading to a deeper
understanding of geometry and its applications in computer
graphics and computer-aided design (CAD).
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Why group theory?

Fron GPT:
Coding theory: Group theory is employed in coding theory to
construct error-correcting codes used in data transmission and
storage systems.
Music theory: Group theory has applications in music theory to
analyze musical structures, symmetries, and chord progressions.

More reference:
https://www.zhihu.com/question/29102364
https://www.scienceforums.net/topic/
51581-real-life-applications-of-group-theory/
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Groups

A group is a pair (G, ·), where G is a set, and · : G×G→ G is a law
of composition that has the following properties:

- Closure: The generalized product is defined as · : G× G→ G
- Associativety: (a · b) · c = a · (b · c) for all a, b, c ∈ G;
- Identity: G contains an identity element 1, such that

1 · a = a · 1 = a for all a ∈ G;
- Inverse: Every element a ∈ G has an inverse, an element b such

that a · b = b · a = 1.

An abelian group is a group whose law of composition is commu-
tative (a · b = b · a).
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Properties
Given a group G, a, b, c ∈ G, then

- there exists a unique identity element;
→ suppose there are two distinct identity i and j, then
i · j = i = j

- ba = ca⇒ b = c and ab = ac⇒ b = c;
→ multiply by a−1 on both sides, note that a group does not
necessarily satisfy the commutative law

- For all a ∈ G, there exists a unique element b ∈ G such that
ab = ba = 1;
→ prove existence (b = a−1) first, then prove uniqueness by
contradiction

- (ab)1 = b−1a−1.
→(ab)1(ab) = 1; (b−1a−1)(ab) = b−1(a−1a)b = 1
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Subgroup
A subset H of a group G is a subgroup if it has the following proper-
ties:

- Closure: If a, b ∈ H, then ab ∈ H;
- Identity: 1 ∈ H;
- Inverses: If a ∈ H, then a−1 ∈ H.

Look carefully at the identity and inverse axioms for a subgroup:
- In verifying the identity axiom for a subgroup, the issue is not

the existence of an identity but whether the identity for
the group is actually contained in the subgroup.

- Likewise, for subgroups the issue of inverses is not whether
inverses exist (every element of a group has an inverse) but
whether the inverse of an element in the subgroup is
actually contained in the subgroup.
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Exercise

1. Given a group G and its two distinct subgroups H1 and H2. Check
whether the following sentences are true or false:

The identity element in G and H1 must be the same.
H1 ∪ H2 is a group.
H1 ∩ H2 cannot be empty and it is a group.
A subset in G that is not a subgroup may be a group.

Comment. Compare to the concept of vector space in Vv186.
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Exercise

2. Z2 = Z× Z denotes the set of pairs of integers:

Z2 = {(m, n) | m, n ∈ Z}.

It is a group under “vector addition”, that is,

(a, b) + (c, d) = (a + c, b + d).

Consider the set
H = {(x, y) | x + y ⩾ 0}.

Check if H is a subgroup of Z2.
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Exercise
3. Let G be a group and let H ⊂ G with H 6= ∅. If ∀a, b ∈ H we have
ab−1 ∈ H then H is a subgroup of G.

Solution:
Since H ⊂ G, any operation in H has associativity. Then, we need to

verify closure, identity, and inverses requirements but we need to do
these in a particular order.

1 Since H 6= ∅, pick any a ∈ H. Then aa−1 = e ∈ H, so H has the
identity.

2 Pick any a ∈ H. Since the identity e ∈ H, then ea−1 = a−1 ∈ H so
we have inverses.

3 Pick any a, b ∈ H. Then b−1 ∈ H and denote as c ∈ H. So,
ac−1 ∈ H according to the problem statement. So,
ab = a(b−1)−1 = ac−1 ∈ H and we have closure.
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Exercise

4. Let G be a group. If ∀x ∈ G : x2 = e, show that G is an abelian group.

Solution:

From ∀x ∈ G : x2 = e, we obtain x = x−1.
Therefore, taking ∀x, y ∈ G, we have

xy = (xy)−1 = y−1x−1 = yx.

This completes the proof.
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Cyclic Group
The cyclic subgroup generated by g is

〈g〉 = {gk | k ∈ Z}.

In other words, 〈g〉 consists of all (positive or negative) powers of g.

〈g〉 = {k · g | k ∈ Z}.

Be sure you understand that the difference between the two forms is
simply notational: It’s the same concept.

Let G be a group, g ∈ G. The order of g is the smallest positive
integer n such that gn = 1 (ng = 0). If there is no positive integer n
such that gn = 1 (ng = 0), then g has infinite order.
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Exercise
5. List the elements of the subgroups generated by elements of
Z8 = {0, 1, 2, 3, 4, 5, 6, 7}.

Solution:

〈0〉 = {0}
〈2〉 = 〈6〉 = {0, 2, 4, 6}
〈4〉 = {0, 4}
〈1〉 = 〈3〉 = 〈5〉 = 〈7〉 = {0, 1, 2, 3, 4, 5, 6, 7} = Z8

Question
What is the identity? Order?
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Exercise
6. Prove that

1 Let G = 〈g〉 be a finite cyclic group, where g has order n 6= 0.
Then the powers {1, g, · · · , gn−1} are distinct.

2 Let G = 〈g〉 be infinite cyclic. If m and n are integers and m 6= n,
then gm 6= gn.

Solution:
1 Since g has order n, g, g2, · · · , gn−1 are all different from 1.

Suppose gi = gj where 0 ⩽ j < i < n. Then 0 < i− j < n and
gi−j = 1, contrary to the preceding observation.
Therefore, the powers {1, g, · · · , gn−1} are distinct.

2 Suppose without loss of generality that m > n. We want to show
that gm 6= gn.
Suppose this is false, so gm = gn. Then gm−n = 1, so g has finite
order m− n. This contradicts the fact that a generator of an
infinite cyclic group has infinite order. Therefore, gm 6= gn.
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Symmetric Group
Definition

Given n ∈ N\{0}, we have the following symmetric group of degree n,

Sn = {All permutations on n letters/numbers}
= Sym{1, 2, 3, . . . , n}
= {f : [n]→ [n] | f bijective}

Note that it is a finite group of order n! (the number of bijections from
[n] to [n]), i.e., |Sn| = n!.

A subgroup of Sn is called a permutation group.
A permutation of the form (ab) where a 6= b is called a
transposition.
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Permutation

A permutation that can be expressed as a product of an even/odd
number of transpositions is called an even/odd permutation.

The set of even permutations in Sn forms a subgroup of Sn, denoted
as An, is called the alternating group of degree n.

Permutation → transportation: (132)(5648) = (13)(32)(56)(64)(48)
(not unique, but only can be either all odd or all even).
Inverse of permutation: σ = (132)(5648) ⇒ σ−1 = (8465)(231)
(Separate permutations to be disjoint first. Since σ(ai) = aj implies
σ−1(aj) = ai, we only need to reverse the order of the cyclic pattern).
Composition: (12)(245)(13)(125) = (14532).
(Apply the right permutation first. Demo!).
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Exercise

7. True or false:
Can an abelian group have a non-abelian subgroup?
Can a non-abelian group have an abelian subgroup?
Can a non-abelian group have a non-abelian subgroup?
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Exercise

8. Prove the following:
1 Sn is non-abelian for n ≥ 3;
2 An is a subgroup of Sn;
3 |An| = n!/2.

HamHam (UM-SJTU JI) Review VII(Slides 458 - 521) July 21, 2023 16 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
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Homomorphism
Given groups G,G ′, a homomorphism is a map f : G→ G ′ such that

for
f (x·y) = f (x) ·f (y)

We have:
f (a1 · · · ak) = f (a1) · · · f (ak)

f (1G) = 1G ′

f
(
a−1) = (f (a))−1

Compare and Contrast
Recall the concept of structure preserving

y f−−−−→ f (y)
x · ↓ ↓ f (x) ·

x ·y f−1
←−−−− f (x · y)
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Image & Kernel
The image of a homomorphism f : G→ G ′, often denoted by im f, or

f (G), is simply the image of as a map of sets:

im f =
{

x ∈ G ′ | x = f (a) for some a ∈ G
}
.

The kernel of f , denoted by ker f, is the set of elements of G that are
mapped to the identity in G ′:

ker f = {a ∈ G | f (a) = 1G ′} .

Comapre and Contrast
Let U,V be real or complex vector spaces and L ∈ L (U,V ), then we

define the range and kernel of L by:

ran L := {v ∈ V : ∃
u∈U

v = Lu}

ker L := {u ∈ U : Lu = 0}
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Properties

Let f : G→ G ′ be a group homomorphism, and let a, b ∈ G. Let K =
ker f. The following are equivalent:

1 f (a) = f (b)
2 a−1b ∈ K
3 b ∈ aK
4 aK = bK

! A homomorphism f : G→ G ′ is injective iff ker f = {1G}.
! Isomorphism G ∼= G ′ ⇔ f is bijective.
! How to check if a homomorphism is an isomorphism:

verify ker f = {1G} (injection) and im f = G ′ (surjection)
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Exercise
9. Let a homomorphism f : G→ G ′, if H is a subgroup of G, prove that
f (H)−1 is a subgroup of G ′.

f (H )−1 :=
{

f (a)−1 | a ∈ H
}

Solution:
Let x, y, a ∈ H.

1 Closure:
f (x)−1f (y)−1 = f (x−1)f (y−1) = f

(
x−1y−1) = f

(
(yx)−1) = f (yx)−1.

2 Identity: 1G ∈ H, 1G ′ = f (1G) = f (1G)
−1 ∈ f (H )−1.

3 Inverse: f (a)−1 = f
(
a−1) ∈ f (H )−1.
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Exercise
9. Let a homomorphism f : G→ G ′, if H is a subgroup of G, prove that
f (H)−1 is a subgroup of G ′.

f (H )−1 :=
{

f (a)−1 | a ∈ H
}

Solution:
Let x, y, a ∈ H.

1 Closure:
f (x)−1f (y)−1 = f (x−1)f (y−1) = f

(
x−1y−1) = f

(
(yx)−1) = f (yx)−1.

2 Identity: 1G ∈ H, 1G ′ = f (1G) = f (1G)
−1 ∈ f (H )−1.

3 Inverse: f (a)−1 = f
(
a−1) ∈ f (H )−1.
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Why? Group Def. Cyclic Group Symmetric Group Homomorphism Cosets End

Exercise

10. Let (G, ·) be a group. Let g, h ∈ G both have order n, prove that
〈g〉 ∼= 〈h〉.

Solution:
Define f : 〈g〉 → 〈h〉 by f (g) = h and for all 0 ≤ k ≤ n, f

(
gk) = f (g)k.

So, f is a well-defined function, and, by definition, f preserves the group
product. It is clear that the function f sends 1G 7→ 1G, g 7→ h, . . . ,
gn−1 7→ hn−1, and so f is a bijection.

(Directly taken from Zach’s slides)
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Cosets
Given a group G, if H is a subgroup of G and a ∈ G, the notation

aH will stand for the set of all products ah with h ∈ H,

aH = {g ∈ G | g = ah for some h ∈ H}

This set is called a left coset of H in G.

The number of left cosets of a subgroup is called the index of H
in G. The index is denoted by [G : H ] (can be infinite, why?).

All left cosets aH of a subgroup H of a group G have the same
order.

- Counting formula: |G| = |H| · [G : H ].
- Lagrange’s Theorem: Let H be a subgroup of a finite group G.

The order of H divides the order of G.
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Exercise

11. Verify Lagrange’s Theorem for the subgroup H = {0, 3} of Z6.

Solution:
The cosets are

0 + H = {0, 3}, 1 + H = {1, 4}, 2 + H = {2, 5}.

Notice there are 3 cosets, each containing 2 elements, and that the
cosets form a partition of the group.
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An important consequence of Lagrange’s Theorem
Theorem

Let (G, ·) be a group and let g ∈ G have order n. If there exists
m, k ∈ N\{0} with n = mk, then the order of gm is k.
Proof.

Let m, k ∈ N\{0} with n = mk. Now, (gm)k = gmk = gn = 1G =. If
0 < q < k is such that (gm)q = 1G, then gmq = 1G. But mq < mk = n,
which is a contradiction.
Theorem

If (G, ·) is a finite group with order n, then for all g ∈ G, gn = 1G.
Proof.

Let (G, ·) be a finite group with order n. Let g ∈ G. We know that
the order of g must be finite, so let k be the order of g. Now, k must
divide n, so the exists m ∈ N such that n = mk. So gn = gmk = (gk)m

= 1m
G = 1G.
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Exercise

12. Prove that for any subgroup H ≤ G, the (left) cosets of H partition
the group G.

Hint:
We need to show that the union of the left cosets is the whole group,

and that different cosets do not overlap.
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Normal Subgroup

Given group G, and a, g ∈ G, the element gag−1 ∈ G is called the
conjugate of a by g.

A subgroup N of G is a normal subgroup, denoted by N � G, if
for all a ∈ N and g ∈ G, gag−1 ∈ N.

Properties:
f : G→ G ′ a homomorphism, then ker f ⊴ G.
Every subgroup of an abelian group is normal.
The center is always a normal subgroup.
gH = Hg for all g ∈ G iff H ⊴ G.
An ⊴ Sn.
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Exercise

Important result:

13. Show that any subgroup of index 2 in a group is a normal subgroup.

Solution:
Denote the subgroup as H. Obviously, the left cosets of a subgroup

of index 2 are 1HH = H and aH, where a 6∈ H; (why?) the right cosets
are H1H = H and Ha. Since the cosets form a partition of the origin
group, and 1HH = H1H = H, so the remaining is another coset, namely
aH = Ha. (left=right) So H is normal.

University of zhihu: https://zhuanlan.zhihu.com/p/163548084
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T HANKS !
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