
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Basics Conectivity Matching Trees End

Review VI(Slides 350 - 413)
Graph Theory

HamHam

University of Michigan-Shanghai Jiao Tong University Joint Institute

July 8, 2023

VE203 - Discrete Mathmatics
HamHam (UM-SJTU JI) Review VI(Slides 350 - 413) July 8, 2023 1 / 16



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Basics Conectivity Matching Trees End

Terminology
Some notations, properties, operations…

vertex set V
edge set E
adjacent
loop
parallel
simple graph
isomorphism G ∼= H
complment G
degree deg(v)
distance dist (u, v)
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Standard Graphs
You should remember both the names and the notations. Let’s see

them in Mathematica!
Complete Graph Kn

Clique
Path Pn

Cycle Graph Cn

Bipartite Graphs Km,n

*Wheel Graph Wn

*Qubic Graph Qn

Attention: null graph
G = (V,∅) or G = (∅,∅) ?
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Exercise

1. The complement of a simple graph G = (V,E ) is given by
G c = (V,E c), where E c = V × V \ E, i.e., the complement has the same
vertex set and an edge is in E c if and only if it is not in E. A graph G
is said to be self-complementary if G is isomorphic to G c .

i) Show that a self-complementary graph must have either 4m or
4m + 1 vertices, m ∈ N.

ii) Find all self-complementary graphs with 8 or fewer vertices.

(Taken from Ve203 FA2020 Assignment10)
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The Handshaking Theorem
Undirected graph:

2|E | =
∑
v∈V

deg(v)

Directed graph:

|E | =
∑
v∈V

deg+(v) =
∑
v∈V

deg−(v)

Remark:
A vertex is said to be isolated if it has degree zero.
A vertex is said to be pendant if it has degree one.
deg+(v): in-degree of a vertex v
deg−(v): out-degree of a vertex v
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Walks and Connectivity

Definition
A walk W in G is a sequence of vertices {vi}n

i=0 and edges {ei}n
i=1 so

that ei is incident with vi−1 and vi.
W is called closed if vn = v0

The length of W is its number of edges n
G is connected if ∀u, v ∈ V (G), there is a walk from u to v
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Exercise

2. Judge whether the following statements are true or false.
A walk must be a path or cycle.
If there is a walk from u to v, there is also such a path.
G is disconnected iff there is a partition {X,Y} of V (G) such that
no edge has an end in X and an end in Y.
For two connected subgraphs H1,H2 ⊂ G that V(H1) ∩ V(H2) ̸= ∅,
H1 ∪ H2 := (V(H1) ∪ V(H1),E(H1) ∪ E(H1)) is connected.
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Components

Definition
A component of a graph G is a maximal connected subgraph in

G. In other words, it is not contained in any other connected
subgraphs.
The number of components of G is denoted as comp (G).

Theorem
Every vertex is a unique component.

Note
If a graph G isn’t connected, it may be useful to consider its

components.
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Exercise

3. Show that a simple graph G := (V,E ) with |V | = n, n ≥ 2 is
connected if |E | > (n − 1)(n − 2)/2.

Hints
Consider components V1,V2, . . . ,Vk...

Kn−1 could only have at most
(

n − 1
2

)
edges.

Alternatively, does induction help?
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Exercise

3. Show that a simple graph G := (V,E ) with |V | = n, n ≥ 2 is
connected if |E | > (n − 1)(n − 2)/2.

Hints
Consider components V1,V2, . . . ,Vk...

Kn−1 could only have at most
(

n − 1
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edges.
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Cuts
Definition(substraction)
Given G = (V,E ), S ⊂ E, X ⊂ V, then G − S := (V,E \ S) and

G − X := (V \ X, {e ∈ E : e not incident with x ∈ X}).

Definition
e ∈ E is a cut-edge or bridge if no cycle contains e
v ∈ V is a cut-vertex if comp (G − v) > comp (G)

What happens when we delete an edge or vertex?
If e is a cut-edge, comp (G − e) = comp (G) + 1
If e is not, comp (G − e) = comp (G)
Further, comp (G − v) ≤ comp (G) + deg (v)− 1

Induced subgraph
Please remember to delete both the vertexes and the edges!
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Exercise
The followings was going to appear in the exam.
4. Given a graph G shown as follows:

List the corresponding vertices or edges of G for the following:
Find a clique of size 4/ size 5 if possible
Find a induced cycle of size 4 / size 5 if possible
Find a maximal matching that is NOT maximum.
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Bipartation & Matching

Theorem
For every graph G, the following are equivalent:

G is bipartite
G has no cyle of odd length
G has no closed walk of odd length
G has no induced cycle of odd length.

Compare and Contrast
Maximal chain/ maximum chain
Maximal matching/maximum matching

HamHam (UM-SJTU JI) Review VI(Slides 350 - 413) July 8, 2023 11 / 16



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Basics Conectivity Matching Trees End

Hall’s Theorem
Let G be a bipartite graph with bipartation (A,B). There exists a

matching covering A iff there does not exist X ⊂ A with |N (X) | < |X|.

Exercise
Given m (not necessarily distinct) finite sets S1,S2, . . . , Sm, there

exists a list of distinct elements x1, x2, . . . , xm such that xi ∈ Si for all
i = 1, 2, . . . ,m iff Hall’s condition holds. State Hall’s condition in
this context.

Solution:
For every k = 1, 2, . . . ,m, the union of any k sets has at least k

elements, that is

|
∪
i∈I

Si| ≥ |I | for all I ⊂ {1, . . . ,m}
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Trees

Recall:
forest
tree
leaf

Exercise
Let T be a tree, v be its leaf. Judge whether the following statements

are correct or not :
1 comp (G ) = |V (G ) | − |E (G ) |
2 |V (T ) | = |E (T ) |+ 1
3 T − v is a tree
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What’s more?

Ramsey Number
Hungarian Algorithm
Union-Find-set
Dynamic Programming on Trees
...
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Reference

Homework exercises from 2020-Fall-Ve203
Exercises/graphics from 2021-Fall-Ve203 TA Xue Runze
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T HANKS !
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