# Review VI(Slides 350 - 413) Graph Theory

### HamHam

University of Michigan-Shanghai Jiao Tong University Joint Institute

July 8, 2023

#### VE203 - Discrete Mathmatics

Review VI(Slides 350 - 413)

| 0000          | 000000            | 00         |   | 00 |
|---------------|-------------------|------------|---|----|
|               |                   |            |   |    |
| Terminology   | y                 | 5          |   |    |
| Some notation | ns, properties, o | operations |   |    |
| • vertex se   | t V               | 1          | 1 |    |

- edge set E
- $\bullet$  adjacent
- $\bullet$  loop
- ${\scriptstyle \bullet} \,$  parallel
- simple graph
- isomorphism  $G \cong H$
- complment  $\overline{G}$
- degree deg(v)
- distance dist (u, v)

| Basics |  |  |
|--------|--|--|
| 0000   |  |  |
|        |  |  |

# Standard Graphs

You should remember both the names and the notations. Let's see them in Mathematica!

- Complete Graph  $K_n$
- Clique
- Path  $P_n$
- Cycle Graph  $C_n$
- Bipartite Graphs  $K_{m,n}$
- \*Wheel Graph W<sub>n</sub>
- \*Qubic Graph Qn

### Attention: null graph

$$G = (V, \varnothing) \text{ or } G = (\varnothing, \varnothing) ?$$

-

(日)

| Basics<br>00●0 |  |  |
|----------------|--|--|
|                |  |  |

1. The complement of a simple graph G = (V, E) is given by  $G^c = (V, E^c)$ , where  $E^c = V \times V \setminus E$ , i.e., the complement has the same vertex set and an edge is in  $E^c$  if and only if it is not in E. A graph G is said to be *self-complementary* if G is isomorphic to  $G^c$ .

- i) Show that a self-complementary graph must have either 4m or 4m + 1 vertices,  $m \in \mathbb{N}$ .
- ii) Find all self-complementary graphs with 8 or fewer vertices.

(Taken from Ve203 FA2020 Assignment10)

| Basics |  |  |
|--------|--|--|
| 0000   |  |  |
|        |  |  |

### The Handshaking Theorem

Undirected graph:

$$2|E| = \sum_{v \in V} \deg(v)$$

Directed graph:

$$|E| = \sum_{v \in V} \deg^+(v) = \sum_{v \in V} \deg^-(v)$$

Remark:

- A vertex is said to be isolated if it has degree zero.
- A vertex is said to be **pendant** if it has degree one.
- $deg^+(v)$ : in-degree of a vertex v
- $\deg^{-}(v)$ : out-degree of a vertex v

|      | Conectivity | Matching |    |    |
|------|-------------|----------|----|----|
| 0000 | 000000      | 00       | 00 | 00 |

## Walks and Connectivity

#### Definition

A walk W in G is a sequence of vertices  $\{v_i\}_{i=0}^n$  and edges  $\{e_i\}_{i=1}^n$  so that  $e_i$  is incident with  $v_{i-1}$  and  $v_i$ .

- W is called **closed** if  $v_n = v_0$
- The length of W is its number of edges n
- G is connected if  $\forall u, v \in V(G)$ , there is a walk from u to v

| Conectivity<br>o●oooo |  |  |
|-----------------------|--|--|
|                       |  |  |

- 2. Judge whether the following statements are true or false.
  - A walk must be a path or cycle.
  - If there is a walk from u to v, there is also such a path.
  - G is disconnected iff there is a partition  $\{X, Y\}$  of V(G) such that no edge has an end in X and an end in Y.
  - For two connected subgraphs  $H_1, H_2 \subset G$  that  $V(H_1) \cap V(H_2) \neq \emptyset$ ,  $H_1 \cup H_2 := (V(H_1) \cup V(H_1), E(H_1) \cup E(H_1))$  is connected.

| Conectivity |  |  |
|-------------|--|--|
| 00000       |  |  |
|             |  |  |

## Components

### Definition

A component of a graph G is a **maximal connected subgraph** in G. In other words, it is not contained in any other connected subgraphs.

The number of components of G is denoted as comp(G).

#### Theorem

Every vertex is a **unique** component.

### Note

If a graph G isn't connected, it may be useful to consider its components.



3. Show that a simple graph G := (V, E) with  $|V| = n, n \ge 2$  is connected if |E| > (n-1)(n-2)/2.



3. Show that a simple graph G := (V, E) with  $|V| = n, n \ge 2$  is connected if |E| > (n-1)(n-2)/2.

### Hints

- Consider components  $V_1, V_2, \ldots, V_k$ ...
- $K_{n-1}$  could only have at most  $\binom{n-1}{2}$  edges.
- Alternatively, does induction help?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| Conectivity |  |  |
|-------------|--|--|
| 000000      |  |  |
|             |  |  |

### Cuts

### Definition(substraction)

Given G = (V, E),  $S \subset E$ ,  $X \subset V$ , then  $G - S := (V, E \setminus S)$  and  $G - X := (V \setminus X, \{e \in E : e \text{ not incident with } x \in X\})$ .

#### Definition

- $e \in E$  is a **cut-edge** or **bridge** if no cycle contains e
- $v \in V$  is a **cut-vertex** if comp(G v) >comp(G)

What happens when we delete an edge or vertex?

- If e is a cut-edge, comp (G e) =comp (G) + 1
- If e is not, comp(G e) = comp(G)
- Further,  $\operatorname{comp}(G v) \leq \operatorname{comp}(G) + \operatorname{deg}(v) 1$

Induced subgraph

Please remember to delete both the vertexes and the edges!

A B A A B A

| Conectivity |  |  |
|-------------|--|--|
| 00000       |  |  |
|             |  |  |

### The followings was going to appear in the exam.

4. Given a graph G shown as follows:



List the corresponding vertices or edges of G for the following:

- Find a clique of size 4/ size 5 if possible
- Find a induced cycle of size 4 / size 5 if possible
- Find a maximal matching that is **NOT** maximum.

HamHam (UM-SJTU JI)

Review VI(Slides 350 - 413)

|      |        | Matching |    |    |
|------|--------|----------|----|----|
| 0000 | 000000 | •0       | 00 | 00 |

## Bipartation & Matching

#### Theorem

For every graph G, the following are equivalent:

- G is bipartite
- G has no cyle of odd length
- G has no closed walk of odd length
- G has no induced cycle of odd length.

#### **Compare and Contrast**

- Maximal chain/ maximum chain
- Maximal matching/maximum matching

|  | Matching |  |
|--|----------|--|
|  | 00       |  |
|  |          |  |

## Hall's Theorem

Let G be a bipartite graph with bipartation (A, B). There exists a matching covering A iff there does not exist  $X \subset A$  with |N(X)| < |X|.

#### Exercise

Given m (not necessarily distinct) finite sets  $S_1, S_2, \ldots, S_m$ , there exists a list of distinct elements  $x_1, x_2, \ldots, x_m$  such that  $x_i \in S_i$  for all  $i = 1, 2, \ldots, m$  iff Hall's condition holds. State Hall's condition in this context.

|  | Matching |  |
|--|----------|--|
|  | 00       |  |
|  |          |  |

## Hall's Theorem

Let G be a bipartite graph with bipartation (A, B). There exists a matching covering A iff there does not exist  $X \subset A$  with |N(X)| < |X|.

#### Exercise

Given m (not necessarily distinct) finite sets  $S_1, S_2, \ldots, S_m$ , there exists a list of distinct elements  $x_1, x_2, \ldots, x_m$  such that  $x_i \in S_i$  for all  $i = 1, 2, \ldots, m$  iff **Hall's condition** holds. State **Hall's condition** in this context.

#### Solution:

For every k = 1, 2, ..., m, the union of any k sets has at least k elements, that is

$$|\bigcup S_i| \geq |I|$$
 for all  $I \subset \{1, \ldots, m\}$ 

i∈I



Let T be a tree, v be its leaf. Judge whether the following statements are correct or not :

$$comp(G) = |V(G)| - |E(G)|$$

**2** 
$$|V(T)| = |E(T)| + 1$$

 $\bigcirc T - v \text{ is a tree}$ 

イロト イヨト イヨト イヨト

|      |        | Matching | Trees |    |
|------|--------|----------|-------|----|
| 0000 | 000000 | 00       | 00    | 00 |
|      |        |          |       |    |

## What's more?

- Ramsey Number
- Hungarian Algorithm
- Union-Find-set

• ...

• Dynamic Programming on Trees

| Basics    | Conectivity | Matching | Trees | End |
|-----------|-------------|----------|-------|-----|
| 0000      | 000000      | 00       | 00    | ●O  |
| Reference |             | $\sim$   |       |     |

- Homework exercises from 2020-Fall-Ve203
- Exercises/graphics from 2021-Fall-Ve203 TA Xue Runze

