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» Set: an unordered collection of distinct objects
« A=Bifandonlyif AcBandBc A/Vx €A, x€EBandVy€EB,ye A

o Cardina“ty » |Al=ne Nif Ais a finite set;
» |A| = oc otherwise. (Question: infinities?)

Set operation:

Subset ACB < Ve(re A = =z € B)

Union UA:={x|dJA € A(x € A)}

Intersection NA:={x |VAe A(x € A)}

Set difference A—-B={x€A|x¢B}

Symmetric difference AAB=(A—B)U(B—-A)

Powerset PX)={A|ACX}={A|Vz(z € A = z € X)}

Empty set 0= {z | false}



Kuratowski's definition: (a,b) := {{a}, {a,b}}

Property: (z,y) = (a,b) <= z=a & y=1>
, Some examples:
Valid encode:

. Ordered pair (a,b) :={{0,a},{1,b}} (the definition of 0 and 1 is not restricted, we only need to
know these are two different objects)

. Ordered triple (a, b, c) := ((a,b),c).

- n-tuple (3307 e ajﬂ—l) = (((3307 331)7 332)7 ooy mn—l)'
Invalid encode; (a,b,¢) =(d,e, f) < a=d&b=c&c=f

+ Ordered triple (a,b,¢) := {{a},{a,b},{a,b,c}} (a,b,¢) = {{0,a},{1,b},{2,c}}
Cartesian Product
For two sets X, Y, their Cartesian product is

XxY:={(z,y) [reX&yeY}={p|eXIyecY(p=(2,9)}



Imply: p — q¢ <= —pVgq

re(PNQ)’ if and only if r & PNaQ, P q|pP—q
[How to prove a statement is true:j if and only if g Porz¢Q, 0 0 1
.. if and only if reP orzeq, 0 1 1
° From deflnltlon if and only if re P UQ". 1 0 0
* Truth table 1 1] 1

* Truth tree: systematically derive a contradiction from the assumption that a certain set
of statements is true. Opposite of the statement you
* Infers which statements are forced to be true under this assumption. want to prove to be frue
* When nothing is forced, then the tree branches into the possible options

All branch lead to contradiction: the original statement is true(as you make the opposite
assumption)

Some branch failed to lead to contradiction: can’t derive anything. Giving counter examples can
prove the original statement is false / or change the assumption to prove again

e Natural deduction: formally derive the statement from (classical) logical rules



Truth tree

* With logic operator
 WithVand 3
—[3x e M A(x)] & Vx € M : =A(x)
—[vx e M A(x)] & Ix € M : =A(x)

(this table will not be provided in exam

PAq (pVq) (p— q)
P -p P
q q q
(pAq) pVvVag p—+q
—-p —q P q P q
p<q (p <+ q)
P P p P
q -q -9 q

dz, P(x) :exist a that P(a) is true, while @ is a new constant symbol here

P(a) should use a new symbol each time,

as we don't know what @ is, only know @ exists

Va, =P(x) : can choose arbitrary x. but...how to choose? —P(b)is true, but useless

—P(a) "Delay” the choose! (create contradictory)

GOOd pra Ct'Ce Exercise 1.4 (8 pts) Use the truth tree method to justify whether the following entailments are correct, or find a

counterexample.

(i) (2pts) Vady(P(z) Vv Q(y)) - FyVz(P(x) vV Q(y))




Natural Deduction Rules

What is the small “a”?
Tags for assumptions!

4 N ( _ _ A ANB ArnB | Y [ T
Assumption Conjunctions a5 M T s Absurdities
'L 1
AeTl _ r'-A T+B I'+-AAB I'AAB — — (LE) | =ik
assumption A-1 A-E-L A-E-R
A (ssumption rrang D rra ED g\ ) I-A A
o /L
abbr
/D. - . A : B : N A= ADL
isjunctions avg ! AvE " ar 57
A (L) ' B LR TFAVB | T,A-C F,BH:‘] : :
TFAVB TFAvVB | TrC AVE CC C e
- ——
4 . . : A A
Implication Axiom of the Excluded Middle .
LrASB  TrA _ _ _ -
A+ B (=) rC B — (AEM onIy. in classical !oglc, .
'-AOB - not in constructive logic |
g [A] A= B A L [-A)° ) Interesting fact:_these
: B : two can not derive
B | L < " each other
a DNE
A— B A ,



e Prove by definition: Prove that for any sets A, B, we have | JAC B <— A C P(B).
(I don’t think this would appear in the exam but this can check you understand of definitions)

* Prove by truthtree ((p — ¢) A (—r — —q)) F (p — 7)

* Prove by natural deduction rules (=N (r——q) = (p—r)



Recursive definition Structural proof :

A binary tree is either: To prove a statement P(t), V treet
» the empty tree, denoted by null; or 1. Prove P(Ieaf)
» a root node x, a left subtree Ty, and a right subtree T,, where x is an 2. If P('Eft), P(rlg ht), value X, prove
arbitrary value and 7, and T, are both binary trees. P(node(x, |eft; I’Ight))
Linked Lists

To prove a statement P(l), V list [
1. Prove P(nil) (empty list)
2. If P(I), and a is an element, prove P(<a, |>)

A linked list is either:
» (), known as the empty list; or

» (x,L), where x is an arbitrary element and L is a linked list.




Monoid: a set equipped with an associative binary operation and an identity

element.
The order of elements matters(as no commutative rule) but the order of operation(calculate which part first)

doesn’t matter

Definition (Monoid)

(a->'b->'b)->"b->"alist ->"b A monoid is a triple (M, e, *), where M is a set, together with an identity

Let rec foldr f al = element e € M, and a function M x M — M, such that for all m,n,p € M, the
match 1 with following monoid laws hold,
[ []1-> a » mxe=mand exm=m

[ x :: xs -> f x (foldr f a xs) > (m*n)xp=mx(np)

(a->'b->"a)->'a->'blist->"a
Let rec foldl f a1l = _
! ] monoid => foldr and foldl have the same effort
match 1 with

[ [1->a
[ x :: xs -> foldl f (f a x) xs




Induction

Principle of Mathematical Induction
Given a predicate P : N — B, then P(n) is true for all n € N provided that

* Weak induction

- (I) base case: P(0) is true.

(I1) inductive case: whenever P(n) is true, P(n-+ 1) is true, i.e.,

Natural number (¥n € N)(P(n) = P(n+ 1))

In the inductive case, P(n) is called inductive hypothesis, often

zero nat abbreviated as /H.

a nat As a formula, (1) and (Il) can be combined as
succ(a) nat

[P(0) A (Vn € N)(P(n) = P(n+1))] + (Vn € N)P(n)

 Strong/complete induction

Supppse over N we have Please clearly write the base case, IH and inductive case
when you are writing proof
(1) P(0).

(I (vn)[(Vk < n)P(k) — P(n)].
Then (Vn)P(n).




Definition
The set X" of strings over the alphabet X is defined recursively by
» ¢ € X", where ¢ is the empty string containing no symbols.

» If a€ X and x € ¥, then ax € L*, where ax := (a, x) is an ordered pair.

Note that @* = {¢}.

Definition
Let X be a set of symbols and £* the set of strings over .. We can define the
concatenation of two strings, denoted by - : ¥ x X" — ¥*, recursively as

follows.
» If z € L*, then €+ z:= z, where ¢ is the empty string.

» If w,ze X* and w = ax, then w:z = ax -z := a(x - 2).
The concatenation of the strings wy and wy is often written as the juxtaposition

acx

wiws instead of wy - ws.

Exercise 2.2 (2 pts) Show that concatenation of string is associative, i.e., z+ (y-z) = (z-y) - z for all z,y,z € ¥*.



Given an alphabet X = {a, b, ¢}, a, b, c are distinct. Consider the subset of strings A c X*
recursively defined by

a €A

ifxe A, bx €A

ifxeAd,xceA
prove that A = {b™ac™ | m,n € N}.

How to prove two sets are equal

How to prove the base case
What is the TH
How to prove the inductive case



( )
Relation: subset of a Cartesian product

Elements in relation: ordered pairs

Function: some special relations
(S J

Ordered pair(Kuratowski): For any x, y, let (x,y) := {{x}, {x,y}}.

For two classes X, Y, their Cartesian productis X x Y := {(x,y)|x € X&y € Y}

A set (or class) R is a binary relation if each of its elements is an ordered pair (x, y), in which
case we write x Ry : < (x,y) € R.

eg. €= {(x,y)|x € y}.

domain(R) := {x |3y ((x,¥) € R)},  range(R):= {y|3x((x,y) € R)}.

A relation f is a function if for each x in domain(f), there exist unique y such that x fy,
we denote this y by f(x). (Vx € A)(dly(xFy))

If f is a function, domain(f) = X, and range(f) € Y, then we say that f is a function from X
toY, denoted f: X—Y, and call Y a codomain of f.

YX:= {f|fisa functionX - Y }.



Operation on Relation/Function

For arbitrary sets/relations/functions A, F, and G,

» The inverse of F is the set
F' =F 7 ={{y,x) | x5}

» The composition of F and G is the set (beware of the order)
Theorem

GsF=FoG={(x,2)[Jy(xGy AyFz)} Given a set A, the triple (P(A x A),s,ida) is a monoid.
» The restriction of F to A is the set
FIA={(x,y) | (xFy) A (x € A)}
» The image of A under F is the set
F(A) =im (F|A) = {y | (3x € A)(xFy)}

If Fis a function, then F(A) = {F(x) | x € A}.



Injection & Surjection

e Fortwo functions f,g: X —» Y,wehave f =g <«<=Vxe X (f(x) = gx))

 Partial function: domain f € A Total function: domain f = A

Given a function F: A - B, with dom F= Aand im(F) C B,
* Injective/one-to-one: (Vx,y € A)(F(x) = F(y) > x=y).
 Surjective/onto: im(F)=B

* Bijective: injective & surjective



Properties of relations

_ Definition
Partial order: A (binary) relation Ron A, i.e, RC AX A, is
> reflexive if (Vx € A)(xRx).
irreflexive if (Vx € A)(xRx — ).

strongly connected or total® if (Vx,y € A)(xRy V yRx).

non-strict: reflexive, antisymmetric, transitive < C

strict: irreflexive, asymmetric,

antisymmetric, transitive < transitive if (Vx,y,z € A)(xRy A yRz — xRz).

symmetric if (Vx,y € A)(xRy — yRx).
Total order:

anti-symmetric if (Vx,y € A)(xRy A yRx — x = y).

vyvyvyvyYyy

partial order + total(any two can be compared) asymmetric if (Vx,y € A)(xRy A yRx — 1).
e.g., divisibility, subset relation are not total order

Equivalence relation:

reflexive, symmetric, transitive

e.g.,=, =, isomorphism



(1) Let X,Y be sets, R C X xY be a binary relation. Let idy,idy denote the identity (i.e.,
equality) relations on X, Y respectively. Consider the following conditions:
(i) R_ oR Cidy (v) dom(R) = X
(i) R~ 'o R Didy (vi) mg(R) =Y
(iii) Ro R~! Cidy (vii) R is a partial function (with dom(R) C X)
(iv)
(

Ro R ! Didy (viii) R~! is a partial function
(a) Prove that each condition on the left is equivalent to one on the right (which?).
(b) Conclude that R is a function X — Y iff two conditions (which?) on the left hold.
c¢) Conclude that R is an injection X — Y iff some conditions (which?) on the left hold.
d)

Conclude that R is a surjection X — Y iff some conditions (which?) on the left hold.

(



Example 2.80. For any set X, there is a bijection between subsets of X and their indicator (or
characteristic) functions:

P(X) 2%
xa:X —2={0,1}
A N 1 ifzxe A,
* 0 else
FH{Y] = f.

Example 2.81. For any sets X, Y, Z, we have bijections
ZXXY i, (ZX)Y
fre(y= (- fz,9)))
(9(¥)(z) = (z,y)) < g,
and similarly ZX*Y 2 (ZY)X,

Exercise 2.82. Give a bijection P(X x Y) = P(X)Y.



Formal Power Series

Definition
A formal power series is an expression

A(x) = Z apx"

n=0

which is called the generating function of the sequence (a,), where x is usually
called the variable or indeterminate. Specifically, we identify x with the
sequence (0,1,0,0,...). We also write the scalar coefficients as [x"|A(x) = a,.
In general, the scalar coefficients could be taken as elements of a ring.

Properties of Formal Power Series (Cont.)

> Multiplication: A(x)B(x) = . (E’Lg 2 bn—i) o A generating function is a clothesline
> commutative: A(x)B(x) = B(x)A(x) on which we hang up a sequence of numbers for display.
» associative: (A(x)B(x))C(x) = A(x)(B(x)C(x)) ——‘/j\_éé‘ ﬁt % ﬁ%ﬁ)«% *—/fﬁ E?Z\Eé% ’

» multiplicative identity: 1 A(x) = A(x) for all A(x), where

1=1+0x+0x%-- KL EFHEELTBHEAF,
» Distributivity: A(x)(B(x) + C(x)) = A(x)B(x) + A(x)C(x) —H.S.WILF (1989)

To summarize, formal power series forms a commutative ring.



Formal Power Series

Linear Recurrence Binomial Identity Advanced Counting

Characteristic Eq. Binomial Theorem Inclusion-Exclusion



Linear Recurrence Relations

A sequence (a,) = (ag, a1, ap, . . . ) satisfies a (homogeneous) linear recurrence
relation of order d if there exists constants ¢;, ¢, ..., cqg with ¢4 # 0 such that

ap, = Clan—1+ Cap—2+ -+ Ccqgap—yg

Theorem
for all n > d. For the second order linear recurrence relation a, = c1a,—1 + Cran_o, if the
characteristic polynomial x has repeated roots r, i.e., x(t) = (t — r)?, then

Consider the second order case when d = 2: a, = cya,_1 + cra,_p, n > 2, there exist constants ay and az such that a, = (ccx + aan)r” for all n > 0.

o # 0. We call x(t) = t? — cit — ¢ the characteristic polynomial of the General Strategy

linear recurrence relation. Let r; and r» be roots of x, i.e., Homogeneous solution + (any) particular solution
x(t) =(t —n)(t —nr), or

Example
o+ /Clz — 4cy Find the general solution to
nz=
Note that r; # 0 and r» # 0.
Theorem > Homogeneous solution: al") = a(—2)" + apb”.

If ri # r2, then there exist constants «vy, oo such that a, = ar{ + aory (o)
» Particular solution: Try a5’ = d3". (= d = —1/15)

General solution

1
an = a1(—2)" + ax6” — E3”



Solving Linear Recurrence

Exercise 2 (10 points)
Find the general solution to the following inhomogeneous linear recurrence equation

Yn+2 — 5yn+1 + Gyn - TLQ - 3"

Solution: First note that the homogeneous solution is given by yq(lh) = 2"+ ¢y 3" Next
assume that a particular solution is given by yi(f ) = (an + bn? + en®) - 3", then

which yields a = %, b= —%, c= %. Therefore we have a particular solution given by
Ynt2 = Bt + 6y, = [a(n+2) +b(n +2)* +c(n +2)7] - 37
= Sla(n+ 1)+ bln + 1P+ cln +1)7 - 371 g = (209, T L ge (6)
+ 6[an + bn® + en®] - 3" (2) 18 6 8
= [a+ Tb+ 19¢ + (2b + 21c)n + 3cn®]3"*! (3) L
 [3(a+ b+ 19¢) + 326+ 21c)n + 9en?] 3 (4) hence the general solution is given by
109 7 1
therefore we have = (h) + P = om (c +—n—-n>+ _n3) 3" 7
a+7b+19¢=0 == T8 6 8 @)
= 5
§b+ 2116 0 ) where ¢, co are arbitrary constants.
c =

Could you try to solve with generating function? z an2pn _ 3X(1+3%)
. J..\ °, ) - (1 - 3X)3
| tried but ) it’s too hard.... =0



Solving Linear Recurrence

Tosolve a,, = c1a,_1 + C2a,,_5, let A(x) = Y0 anXx™.

Proof (Formal Power Series, Cont.)
Hence A(x) = ag + ai1x + cix(A(x) — ap) + c2x?A(x), hence

ap + aix — ci1apx __ao + aix — c1apx
1—c1x — x? (1 —nx)(1—rnx)

A(x) =

We can use partial fraction to get (recall that r; # n)

a1 a

A(x) = 1= rix +1- o a1 Z(rlx) + ap Z(rgx)

n=0 n=>0

that is,

Z apx" = Z(al r{ + azry )x"

n=>0 n=>0

Compare coefficients, we get a, = ayr{ + aary for n > 0.

Proof.
Same as before, we get
ag + (a1 — cpaix)
A= (1 — rx)?

Then by partial fraction, there exist constants /31, 32 such that
b1 B2
A —
() T—me ™ (1—rx)?

=B (m)"+B2) (n+1)(mx)"

n>0 n>0




Solving Linear Recurrence

Consider the linear recurrence relation given by:
a, = 5a,_1 —6a,_, + 2"

with initial conditions ay = 1,a; = 3.
Find a,,’s closed-form expression.



By the recurrence relation,
A(x) —1—-3x 5A(x) —1

— 6A(x) +
x? X 2 1—2x
Apply partial fraction, we get
1+ 5x% — 4x 1 1 1 1 1
A(X) — = 7 — — — — >
(1—2x)%(1 — 3x) 1-3x 21—-2x 2(1-—2x)

Therefore,

1
b, = [x"]A(x) =2 3" - 2" —En-Z"



Binomial Theorem
Definition
Let m € Q, define (g’) =1, and

(f) _mm =)o (m k1)

where k € N\ {0}. Note that if m € N'\ {0}, then (}) = gty

Theorem (Binomial Theorem) Example
Let me Q, then If m= —1, then

(l—i-x)m:Z(r:)x” (1+x)7

n>0



> ()-(o03

(Z)=<n;1)+<n_

|

1
k—1

)



Proving Combinational Identities

Exercise 4.6 For integers n,k > 0, prove Pascal’s identity

(:ii) - (:) N (kj—l)

by verifying the following equalities of generating functions.

o (i) =3[+ (1)

k=0 k=0



Proving Combinational Identities

[
x|
w‘A
V[
~
S
=~ +
—_
~_
=
w
I
(WY
N~ —
|
=
~—~~
—
—
+
=
\—r
S
+
=
I
—_
~

RHS = ;(kil)xk+2(;:)xk=%-((1+x)"—1)+(1+x)"

k=0
=%-((1+x)”-(1+x)—1)=LHS



Prove the iy

r ) r—k/\k
k=0
by evaluate the coefficient of x" in

(14+x)™"={1+x)™-(1+x)"



An example
from chatGPT

Suppose we have n and 3 children. How many
ways are there to distribute the candies among the children if each
child can receive any number of candies (including none)?

Since each child can receive any number of candies, the
generating functions for each child can be written as:

Ci(x) = 1+x+ x*+x3+--
To find the generating function that represents the distribution

of candies among all three children, we multiply the generating
functions for each child together:

C(x) = Cy(x) - Cr(x) - C3(x)



Expanding this product using algebraic multiplication, we get:
3
C(x) = (1+x+x2 + x3 +) =(1-x)"3

The coefficient of x* in the power series expansion represents the
number of ways to distribute the k candies among the 3 children.

v (-

Therefore, the number of ways to distribute the n candies
among 3 children is (";2).



Advanced Counting Technique

Exercise 4.3 Consider n € N, n > 2000.
Tr+T2+xT3+Ta+T5+x6+T7 <N

Use generating function to find the number of integer solutions if

(i) 1 <z; <5fori=1,...,6 and 3 | z7;
Consider the

FO) = (x+x2+x3+xt+x5)° - (1423 +x8+) - (L+x+x2+ )

Then the number of solutions is the coefficient of x™.



Inclusion-Exclusion Principle

Notation
Given | C [n], we let

A,-' — ﬂ A;,

iel
where A; C X for all i € I. For example, A{1,2,4} = A1 N A>x N As. In particular,
A@ —_ X

Theorem (Inclusion-Exclusion Principle)
Let A1,...,A, be subsets of X. Then the number of elements of X which lie in
none of the subsets A; is

> EDMAL=) (1) ) |Al

IC[n] r>0 [l|=r



Inclusion-Exclusion Principle

Corollary
Let Az, -+, A, be a sequence of (not necessarily distinct) sets, then

ALUAU--UA = ) (=14

Special Case
When |I| = [J| = |A/| = |A)

n
ALUA U UA =) (—1)H (III) Al



Exercise

Exercise

Find the number of non-negative integers solutions of

$1+I2+3}3+I4:30,

such that 3 < z; < 10 for every 1 < i < 4.
Solution

First, let y; = z; — 3. We will count integer solutions of the equation
Y1+ y2+ys+ya =18,

with 0 < y; < 7, as there is a straightforward bijection between such solutions and
the solutions of the original equation. There are

(8- (")

non-negative solutions to this equation, when we ignore the upper bounds y; < 7.
Let A; be the set of solutions with y; > 8. Then we are interested in 1330 — [A; N
As N Az N Ayl



Exercise

To compute |A;|, for example, we used the fact that solutions in A; correspond
to non-negative integer solutions of z; + ys + y3 + y4 = 18 — 8 after substitution
z1 = y1 — 8. Applying inclusion-exclusion, we have

4
‘AlL.JAgUAgUA,;l‘ :Z|AE‘— Z |A1ﬁ/-13.|-|— Z |AzﬁAjﬁAk\
1=1

1<i<j<4 1<i<j<k<4

B (18 =8)+4—-1Y) (18 —2-8)+4—1 B
_4-( 18— 8 6 - 1893 + 0 = 1084.

The final answer is 1330 — 1084 = 246.



Pigeonhole Principle

Theorem (Pigeonhole Principle)

No set of the form [n] is equinumerous to a proper subset of itself, where n € N.

Theorem (Erdés—Szekeres, 1935)

Let A= (a1,...,an) be a sequence of n different real numbers. If n > sr + 1

then either A has an increasing subsequence of s + 1 terms or a decreasing
subsequence of r + 1 terms (or both).



Homework ex3.6

Given sets A,Bs.t. A € B A |A| = |B| < o, use pigeonhole
principle to show that A D B.

: Suppose B & A,i.e.dx € B,x & A. Let
C={x|x€EBAx¢&A}=B—-A+0.
Now (B—C c A)A(A c B —C), because only x &€ A are kicked
out. SoA=B—-C=|A|=|B|=|B—-C|,butB—C & B, and
both of them are finite sets. By , o finite set
is equinumerous to its subset, contradiction.



Equinumerosity

Definition
A set A is equinumerous to a set B (written A ~ B) if there is a bijection from
Ato B.

Prove that
Theorem e
For any sets A, B, and C: i
> Ax A. 2. Nx N~ N
» A~ B= BxA. 3. (0,1) =R
» (AxBAB~C)= A= C. 4.10,1] = (0, 1)
Warning

NOT an equivalence relation since the it concerns all sets.



Cardinality

Cardinality

For every set A, there is a unique cardinal (or cardinal number) s with A ~ k.
We call that k the cardinality of A, denoted by card A = k.

Example Continuum Hypothesis

» card[n] = nfor all n € N. There is no set S for which Rg < |S| < 2%, That is, 250 = R;.
» card N = RXg (by Cantor).  c,ution
» card R = 2%o. {X | card X = k} is NOT a set, excpet for k = 0.



Cardinality

Definition
A set A is dominated by a set B (written A < B) if there is an injection from

A to B.

Definition

We write card A < card B if A < B.

Definition

A set A is countable if A <N, i.e., card A < Ny. Otherwise, it is called
uncountable.

Theorem (Cantor-Schroder-Bernstein)
(card A < card B) A (card B < card A) = card A = card B, i.e,
(A<B)A(B=<A) = A~ B.



Given countably infinite sets A and B, calculate card A X B.

Since both 4 and B are countably infinite, then A = N and
B = N. Also notethat N X N = N, so A X B = N. Hence
card A X B = card N = X,.



PN R AL
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