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Master Theorem - Notation 

Notation Formal definition Limit definition

Asymptotic upper bound f (n) = O(g(n)) exist positive constants c and 𝑛0 such 
that 
0 ≤ f (n) ≤ cg(n) for all n ≥ 𝑛0

lim
𝑛→∞

𝑠𝑢𝑝
𝑓(𝑛)

𝑔(𝑛)
< ∞

Asymptotic lower bound f(n) = Ω(g(n)) exist positive constants c and 𝑛0 such 
that
0 ≤ cg(n) ≤ f (n) for all n ≥ n0

lim
𝑛→∞

𝑖𝑛𝑓
𝑓(𝑛)

𝑔(𝑛)
> 0

Asymptotic tight bound f(n) = Θ(g(n)) exist positive constants c1, c2, and 𝑛0

such that
0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0

The two above

Stirling approximation:



Given f(n) = 1 + cos(πn/2) and g(n) = 1 + sin(πn/2), then (Summer 2021) 
□ f(n) = O(g(n))
□ g(n) = O(f(n))
□ f(n) = Θ(g(n))
□ g(n) = Θ(f(n))

Notation Formal definition Limit definition

Asymptotic upper bound f (n) = O(g(n)) exist positive constants c and 𝑛0 such 
that 
0 ≤ f (n) ≤ cg(n) for all n ≥ 𝑛0

lim
𝑛→∞

𝑠𝑢𝑝
𝑓(𝑛)

𝑔(𝑛)
< ∞

Asymptotic lower bound f(n) = Ω(g(n)) exist positive constants c and 𝑛0 such 
that
0 ≤ cg(n) ≤ f (n) for all n ≥ n0

lim
𝑛→∞

𝑖𝑛𝑓
𝑓(𝑛)

𝑔(𝑛)
> 0

Asymptotic tight bound f(n) = Θ(g(n)) exist positive constants c1, c2, and 𝑛0

such that
0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ 
n0

The two above



Master Theorem 



Exercise:

1. T n = kT
n

2
+ θ n2

2. T n = T n + lg(n)



Partial Order

Poset (P, ≤)
• Reflexive: ∀𝒙 ∈ 𝑷, 𝒙 ≤ 𝒙
• Antisymmetric: ∀𝒙, 𝒚 ∈ 𝑷, 𝒙 ≤ 𝒚 𝒚 ≤ 𝒙 → 𝒙 = 𝒚
• Transitive: ∀𝒙, 𝒚, 𝒛 ∈ 𝑷, 𝒙 ≤ 𝒚 𝒚 ≤ 𝒛 → 𝒙 ≤ 𝒛
(maybe for some x, y no relation between them)

+ dichotomy ∀x, y ∈ P (x ≤ y or y ≤ x) 
(any two elements are comparable)

 Linear/Total order

+ original order relation kept

 Linear extention

y cover x x

y

x

y



Maximal & maximum ?

Minimal/maximal: (among those who comparable with it)
no larger/smaller (may not unique), can’t be extended

Compare with every element

Minimum/maximum(unique if exist)



Chain & Antichain

Chain: a subset of comparable elements (a complete graph)

Antichain: a subset of incomparable elements

• Maximal: can’t be extended

• Maximum: max length

Height: maximum size of chain

Width: maximum size of antichain

Given a finite set S, then

• (2𝑆 ,⪯) is a poset, where A ⪯ B iff |A| ≤ |B| for A,B ⊂ S.

• The width of (2𝑆,⊂) is at least |S|.

• The height of (2𝑆,⊃) is at most |S|.

• The height of (2𝑆,⊃) is at least |S|.

Exercise 



Dilworth’s Theorem

k: least integer that P is a union of k chains

m: size of largest antichain of P

Dilworth Theorem: k=m

“dual”:

k: least integer that P is a union of k antichains

m: size of largest chain

Mirsky’s Theorem: k=m

Example: 

width of the graph on the right? 

Given a finite poset, would removing a maximal chain decreases the width of the poset? 



Basic Graph Definitions

• Loop, parallel, simple graph

• Isomorphism G ≅ H 

• Bijection from V(G) -> V(H) that keep the edges

• Equivalence relation

• Complement: 

• Complete graph(𝐾𝑛)/Clique: pairwise adjacent, simple graph

• Path(𝑃𝑛): no repeat vertices

• Cycle graph(𝐶𝑛): Path + 𝑒𝑛 = 𝑣𝑛𝑣1

• Induced subgraph: every edge: both ends in the subgraph => edge in subgraph

• Bipartition: V(G) => (A, B), no edge has both ends in A or B



Double Counting

• Relation between Degree & Edge

• Handshaking lemma

• Exercise:

• In any graph with at least two nodes, there are at least two nodes of the same 
degree

• Is it true that a finite graph having exactly two vertices of odd degree must 
contain a path from one to the other? Give a proof or a counterexample.

• Theorem: Consider a 6-clique where every edge is colored red or blue. The  graph 
contains a red triangle or a blue triangle



Connectivity

Path: the vertices can be ordered as 𝑣1, 𝑣2, . . . , 𝑣𝑘 and edges can be ordered as 𝑒1, 𝑒2, . . . , 𝑒𝑛−1 that 
𝑒𝑖 = 𝑣𝑖𝑣𝑖+1

Walk: a sequence of (not necessarily distinct) vertices 𝑣1, 𝑣2, . . . , 𝑣𝑘 such that 𝑣𝑖𝑣𝑖+1 ∈ 𝐸 for 𝑖 =
1, 2, . . . , 𝑘 − 1.

• Distinct Vertices  => path

• 𝑣0 = 𝑣𝑛 => closed

Length: number of edges

Theorem: If there is a walk from u to v, then there is a path from u to v.

Connected: A graph G is connected if for all u, v ∈ V(G), there is a walk from u to v 

(intuitively, one can pick up an entire graph by grabbing just one vertex)

G is disconnected iff there is a partition {X,Y } of V(G) such that no edge has an end in X and 
an end in Y

Each maximal connected piece of a graph is called a connected component



Which of the following statements about graphs are correct?

C5 is self-complementary.

P4 is self-complementary.

K2,2 is induced in C4.

C1 is induced in K5.



Bridge 

If the deletion of a edge/vertex v from G causes the number of components to increase, 
then v is called a cut edge/vertex

an edge e is a bridge of G if and only if e lies on no cycle of G



Bipartition & Matching

Matching:  

• A subset of edges

• No common vertices

Or each node has either zero or one edge incident 
to it.

Perfect matching: every vertex of G is incident with 
an edge in M.



Matching

Hall’s theorem

Let G be a finite bipartite graph with bipartition (A, B). 

There exists a matching covering A iff |N(X)| ≥ |X| ∀X ⊆ A (Hall’s condition)

• If X ⊂ V(G), the neighbors of X is N(X) := {v ∈ V(G) \ X | v is adjacent to a vertex in X}

• The edges S ⊂ E(G) covers X ⊂ V(G) if every x ∈ X is incident to some e ∈ S.



The matching number (i.e., size of a largest matching(edge set)) is equal to 
the vertex cover number (i.e., size of a smallest vertex cover) for a bipartite graph.

• Prove that a k-regular bipartite graph has a perfect matching (k>=1)
k-regular: deg(v) = k for all v in V(G)

König-Egeváry Theorem



Homomorphism

Definition:

• simple graphs G and H

• a map from V(G) to V(H) which takes edges to edges

=> nonedge can be mapped to anything

=> There is an injective homomorphism from G to H (i.e., one that never maps distinct 
vertices to one vertex) if and only if G is a subgraph of H. 

If a homomorphism f : G → H is a bijection whose inverse function is also a graph 
homomorphism, then f is a graph isomorphism. This is same as the Definition in slides

If there is a homomorphism G → H and another homomorphism H → G. Are 
the maps surjective or injective?



Tree

forest: no cycles => comp(G) = |V(G)| − |E(G)|.

tree: any two of {connected, no cycles, |V(T)| = |E(T)| + 1}

spanning tree of G = subgraph + tree + contain all vertices

Theorem: 
For connected graph with |V(G)|>2, 
• subgraph H is a spanning tree
• Iff H is a minimal connected graph with V(T) =V(G)
• Iff H is a maximal subgraph without cycles



Which of the following graph is a tree?

A simple graph with a unique path between any 2 vertices.

A connected simple graph in which every edge is a cut edge.

A connected simple graph with n vertices and n − 1 edges.

A connected simple graph with no cycle.



G is a finite graph



Kruskal’s Algorithm
Aim: Find a minimum-cost tree 
Greedy approach
• Maintain a “forest,” or a group of trees /disjoint sets
• Iteratively select cheapest edge in graph

• If adding the edge forms a cycle, don’t add it
• Otherwise, add it to the forest

• Continue until all vertices are part of the same set

Dijkstra’s Algorithm
Aim: shortest path spanning tree for a certain vertex
Greedy Approach
• Separate vertices into two groups:

• “Innies”: vertices that are present in your partial spenning tree at any point in time
• “Outies” : the other vertices

• Iteratively add nearest outie, converting to an innies

Algorithm 



• Find a minimum-weight spanning tree using Kruskal’s Algorithm

• Given the root vertex a, find a shortest path spanning tree using Dijkstra’s Algorithm
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Divisibility

• 𝑎 ∣ 𝑎 (reflexive)
• 𝑎 ∣ 𝑏 ∧ 𝑏 ∣ 𝑐 ⇒ 𝑎 ∣ 𝑐 (transitive)
• 𝑎 ∣ 𝑏 ∧ 𝑏 ∣ 𝑎 ⇒ 𝑎 = ±𝑏 (?)

1. ∣ on ℤ: pre-order
2. ∣ on ℕ: partial-order



Prime Numbers



Infinitude of Prime



Greatest Common Divisor

How to calculate?
① 1. Euclidean Algorithm
② 2. Factorization

Exercise: Find solution for
111𝑥 − 321𝑦 = 75



Exercise

Let 𝐹𝑛 be Fermat Primes, 𝐹𝑛 = 22𝑛
+ 1. Prove that they are 

pairwise coprime, namely gcd 𝐹𝑛, 𝐹𝑚 = 1.

Motivation: everything starts from division!

𝐹𝑛 = 𝑘 ⋅ 𝐹𝑛−1 + 𝑟 ⇒ 𝐹𝑛 = 22𝑛
− 1 + 2 = 𝐹𝑛−1 ⋅ 22𝑛−1

+ 1 + 2

gcd 𝐹𝑛, 𝐹𝑛−1 = 𝐹𝑛−1, 2 = 1
But actually:

𝐹𝑛 − 2 = 22𝑛−1
+ 1 ⋅ 22𝑛−2

+ 1 ⋅⋅⋅



Modular Arithmetic



Arithmetic Functions



Properties of Euler’s Function

𝜑 𝑝 = 𝑝 − 1

𝜑 𝑝𝑘 = 𝑝𝑘 − 𝑝𝑘−1 𝑘 ≥ 1

𝜑 𝑚𝑛 = 𝜑 𝑚 ⋅ 𝜑 𝑛 , if gcd 𝑚, 𝑛 = 1

𝜑 𝑎 = ෑ

𝑖=1

𝑘

𝑝𝑖 − 1 𝑝𝑖
𝛼𝑖−1

𝜑 𝑎 = 𝑎 1 −
1

𝑝1
1 −

1

𝑝2
⋅⋅⋅ 1 −

1

𝑝𝑘



Exercise

 Which of following statements are correct?

A. 𝜑 is non-decreasing

B. 𝜑 is multiplicative

C. 𝜑(𝑛) is even for all 𝑛 ∈ ℕ \ {0}

D. 𝜑(𝑛) is the number of generators of the group Τℤ 𝑛ℤ ×



Euler’s Theorem



Exercise



Fermat Primality Test



Chinese Remainder Theorem



Chinese Remainder Theorem



RSA Cryptography!



RSA Cryptography!

In an RSA procedure, the public key is chosen as (n, E) = 
(2077, 97), i.e., the encryption function e is given by

𝑒 𝑥 = 𝑥97(mod 2077)

Note: 2077 = 31 × 67

1. Compute private key 𝐷 = 𝐸−1 mod 𝜑 𝑛 A: -347(1633)

2. Decrypt the message 279:

find 𝑥, 𝑦 = 𝑒 𝑥 ≡ 279 (mod 2077) ⇔ 𝑥 = 279𝐷 A: 1984



Group Theory



Exercise

Given a group 𝐺, for 𝑎, 𝑏 ∈ 𝐺, let 𝑎 ∼ 𝑏 if and only if there 
exists 𝑔 ∈ 𝐺 such that 𝑏 = 𝑔𝑎𝑔−1 (conjugate of 𝑎 by 𝑔).  Show that 
∼ is an equivalence relation.



Cyclic Group



Exercise

Given a group 𝐺, for 𝑎, 𝑏 ∈ 𝐺, 𝑎 ∼ 𝑏 if and only if there exists 
𝑔 ∈ 𝐺 such that 𝑏 = 𝑔𝑎𝑔−1 (conjugate of 𝑎 by 𝑔).  Given that ∼ is an 
equivalence relation, find the partition of cyclic group 𝐶4 by ∼.

Suppose 𝐶4 = 𝑥 = {𝑒, 𝑥, 𝑥2, 𝑥3}, then the partition is given by
{{𝑒}, {𝑥}, {𝑥2}, {𝑥3}}



Symmetric Group



Alternating Group



Exercise

Given a group 𝐺, for 𝑎, 𝑏 ∈ 𝐺, 𝑎 ∼ 𝑏 if and only if there exists 
𝑔 ∈ 𝐺 such that 𝑏 = 𝑔𝑎𝑔−1 (conjugate of 𝑎 by 𝑔).  Given that ∼ is an 
equivalence relation, find the partition of 𝐴4 by ∼.



Homomorphism

isomorphism?



Cosets



Exercise?



Exercise

 Let 𝐺, 𝐻 be finite groups. Which of following statements are 
correct?

A. If 𝐺 cyclic and 𝑑 ∈ ℕ \{0}, the number of elements of order 𝑑 in 𝐺
is 𝜑(𝑑).

B. If 𝑮 and 𝑯 are cyclic groups with 𝑮 = |𝑯|, then 𝑮 and 𝑯 are 
isomorphic

C. If 𝑯 ≤ 𝑮 and 𝒂 ∈ 𝑮 then 𝒂𝑯 = |𝑯𝒂|

D. If H ≤ 𝐺 and 𝑎, 𝑏 ∈ 𝐺, then either 𝑎𝐻 = 𝐻𝑏 or 𝑎𝐻 ∩ 𝐻𝑏 = ∅
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