VE203 Final Review

Presenter: Yue & Yinchen

2023/7/30

Outline

- Master Theorem
- Partial order
- Graph theory
	- Connectivity
	- Bipartition
	- Matching
		- Hall's Theorem
		- Kőnig-Egerváry Theorem
	- Tree
	- algorithm
- Number Theory
	- Divisibility
	- Modular Arithmetic
	- RSA
- Group Theory
	- Cyclic Group
	- Symmetric Group
	- Homomorphism

Master Theorem - Notation

Stirling approximation:

$$
\sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n
$$

Given $f(n) = 1 + cos(\pi n/2)$ and $g(n) = 1 + sin(\pi n/2)$, then (Summer 2021) \Box f(n) = O(g(n)) \Box g(n) = O(f(n)) \Box f(n) = $\Theta(g(n))$ \Box g(n) = $\Theta(f(n))$

Master Theorem

- If $T(n) = aT(n/b) + f(n)$ (for constants $a \ge 1$, $b > 1$), then
	- 1. $T(n) = \Theta(n^{\log_b a})$ if $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$.
	- 2. $T(n) = \Theta(n^{\log_b a} \lg n)$ if $f(n) = \Theta(n^{\log_b a})$.
	- 3. $T(n) = \Theta(f(n))$, if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n (regularity condition).

Exercise 5.2 (2 pts) Let $a \ge 1$ and $b > 1$ be constants, and $T(n)$ satisfies the recurrence

$$
T(n) = aT(n/b) + f(n)
$$

Show that if $f(n) = \Theta(n^{\log_b a} \lg^k n)$, $k \ge 0$, then the recurrence has solution $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$. Assume *n* is integer power of b for simplicity.

If $T(n) = aT(n/b) + f(n)$ (for constants $a \ge 1$, $b > 1$), then 1. $T(n) = \Theta(n^{\log_b a})$ if $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$. 2. $T(n) = \Theta(n^{\log_b a} \lg n)$ if $f(n) = \Theta(n^{\log_b a})$. 3. $T(n) = \Theta(f(n))$, if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n (regularity condition).

Exercise:

- 1. $T(n) = kT(\frac{n}{2})$ 2 $+ \theta(n^2)$
- 2. $T(n) = T(\sqrt{n}) + lg(n)$

Partial Order

Poset (P, \leq)

- Reflexive: $\forall x \in P, x \leq x$
- Antisymmetric: $\forall x, y \in P, x \leq y \land y \leq x \rightarrow x = y$
- Transitive: $\forall x, y, z \in P, x \leq y \land y \leq z \rightarrow x \leq z$ (maybe for some x, y no relation between them)

$+$ dichotomy $\forall x, y \in P$ $(x \leq y \text{ or } y \leq x)$ (any two elements are comparable)

 \Rightarrow Linear/Total order

くと

- + original order relation kept
- \Rightarrow Linear extention

Maximal & maximum?

Minimal/maximal: (among those who comparable with it) no larger/smaller (may not unique), can't be extended **Compare with every element** Minimum/maximum(unique if exist)

- If $z \in P$ but $\exists x \in P$ such that $z < x$, then z is a *maximal element*.
- If $x \le z$ for all $x \in P$, then z is the *maximum* element.

Definition

A chain C in P is

- **In maximal if there exists no chain C' such that** $C \subseteq C'$ **.**
- **IV** maximum if for all chain C' , $|C| \nless |C'|$.

Definition

A maximal connected subgraph of G is a subgraph that is connected and is *not* contained in any other connected subgraph of G.

Definition

- A matching M is maximal if there is no matching M' such that $M \subseteq M$
- A matching M is maximum if there is no matching M' such that $|M|$ < $|M'|$.
- A perfect matching is a matching M such that every vertex of G is incident with an edge in M .

Chain & Antichain

Chain: a subset of comparable elements (a complete graph) **Antichain**: a subset of incomparable elements

- **Maximal**: can't be extended
- **Maximum**: max length

Height: maximum size of chain **Width**: maximum size of antichain

Exercise

Given a finite set S, then

 \Box (2^S , \leq) is a poset, where A \leq B iff $|A| \leq |B|$ for A,B \subset S.

□ The width of
$$
(2^S, \subset)
$$
 is at least |S|.

 \Box The height of $(2^S, \supset)$ is at most |S|.

 \Box The height of $(2^S, \supset)$ is at least |S|.

Dilworth's Theorem

k: least integer that P is a union of k chains

m: size of largest antichain of P

Dilworth Theorem: k=m

"dual":

k: least integer that P is a union of k antichains

m: size of largest chain

Mirsky's Theorem: k=m

Example:

width of the graph on the right?

Given a finite poset, would removing a maximal chain decreases the width of the poset?

Basic Graph Definitions

- Loop, parallel, simple graph
- Isomorphism $G \cong H$
	- Bijection from $V(G) \rightarrow V(H)$ that keep the edges
	- Equivalence relation
- Complement: $uv \in E(\overline{G})$ iff $uv \notin E(G)$.
- Complete graph (K_n) /**Clique**: pairwise adjacent, simple graph
- Path (P_n) : no repeat vertices
- Cycle graph(C_n): Path + $e_n = v_n v_1$
- Induced subgraph: every edge: both ends in the subgraph => edge in subgraph
- Bipartition: $V(G)$ => (A, B), no edge has both ends in A or B

Double Counting

- Relation between Degree & Edge For all finite graph $G = (V, E)$,
- Handshaking lemma

 \sum deg(v) = 2|E|

- Exercise:
	- In any graph with at least two nodes, there are at least two nodes of the same degree
	- Is it true that a finite graph having exactly two vertices of odd degree must contain a path from one to the other? Give a proof or a counterexample.
	- Theorem: Consider a 6-clique where every edge is colored red or blue. The graph contains a red triangle or a blue triangle

Connectivity

Walk: a sequence of (not necessarily distinct) vertices $v_1, v_2, ..., v_k$ such that $v_i v_{i+1} \in E$ for $i =$ $1, 2, \ldots, k-1.$

- Distinct Vertices => path
- $v_0 = v_n = \text{closed}$

Length: number of edges

Theorem: If there is a walk from u to v, then there is a path from u to v.

Connected: A graph G is connected if for all $u, v \in V(G)$, there is a walk from u to v

(intuitively, one can pick up an entire graph by grabbing just one vertex)

G is **disconnected** iff there is a partition {X,Y } of V(G) such that no edge has an end in X and an end in Y

Each **maximal connected** piece of a graph is called a connected **component**

Which of the following statements about graphs are correct?

- *C*5 is self-complementary.
- *P*4 is self-complementary. L
- *K*2*,*2 is induced in *C*4. I.
- *C*1 is induced in *K*5.

Bridge

If the deletion of a edge/vertex v from G causes the number of components to increase, then v is called a **cut edge**/vertex

- ightharpoonup either e is a cut-edge and comp $(G e) =$ comp $(G) + 1$;
- or e is NOT a cut-edge and $comp(G e) = comp(G)$.

an edge e is a bridge of G if and only if e lies on no cycle of G

Bipartition & Matching

Matching:

- A subset of edges
- No common vertices

Or each node has either zero or one edge incident to it.

Perfect matching: every vertex of G is incident with an edge in M.

Theorem

For every graph G, TFAE

- G is bipartite. (i)
- G has no cycle of odd length. (ii)
- (iii) G has no closed walk of odd length.
- (iiii) G has no induced cycle of odd length.

Matching

Hall's theorem

Let G be a finite bipartite graph with bipartition (*A*, *B*)*.*

There exists a matching covering A iff $|N(X)| \ge |X|$ $\forall X \subseteq A$ (Hall's condition)

- If $X \subset V(G)$, the *neighbors* of *X* is $N(X) := \{v \in V(G) \setminus X \mid v$ is adjacent to a vertex in *X* $\}$
- The edges *S* ⊂ *E*(*G*) *covers X* ⊂ *V*(*G*) if every *x* ∈ *X* is incident to some *e* ∈ *S*.

Exercise 7 (10 Marks)

Let G be a bipartite graph with bipartation (A, B) , and G has no isolated vertices. If the minimum degree of vertices in A is no less than the maximum degree of vertices in B , show that there exists a matching covering A .

König-Egeváry Theorem

The matching number (i.e., size of a largest matching(edge set)) is equal to the vertex cover number (i.e., size of a smallest vertex cover) for a bipartite graph.

• Prove that a k-regular bipartite graph has a perfect matching (k>=1) k-regular: $deg(v) = k$ for all v in $V(G)$

Homomorphism

Definition:

- simple graphs G and H
- a map from $V(G)$ to $V(H)$ which takes edges to edges
- => nonedge can be mapped to anything

 \Rightarrow There is an injective homomorphism from G to H (i.e., one that never maps distir vertices to one vertex) if and only if G is a subgraph of H.

If a homomorphism $f: G \rightarrow H$ is a bijection whose inverse function is also a graph homomorphism, then f is a graph isomorphism. This is same as the Definition in slides

If there is a homomorphism G \rightarrow H and another homomorphism H \rightarrow G. Are the maps surjective or injective?

Tree

forest: no cycles => comp(G) = $|V(G)| - |E(G)|$. tree: any two of {connected, no cycles, $|V(T)| = |E(T)| + 1$ } spanning tree of $G = subgraph + tree + contain$ all vertices

Theorem

- Let T be a graph with n vertices. TFAE
- T is a tree; (i)
- T contains no cycles, and has $n-1$ edges; (ii)
- T is connected, and has $n-1$ edges; (iii)
- T is connected, and each edge is a bridge; (iv)
- (v) any two vertices of T are connected by exactly one path;
- T contains no cycles, but the addition of any new edge creates exactly one (v_i) cycle.

Theorem:

```
For connected graph with |V(G)| > 2,
```
- subgraph H is a spanning tree
- Iff H is a minimal connected graph with $V(T) = V(G)$
- Iff H is a maximal subgraph without cycles

Exercise 5 (10 pts) Given a graph G. Show that an edge $e \in E(G)$ is a cut-edge iff e is contained in every spanning tree of G .

Which of the following graph is a tree?

- A simple graph with a unique path between any 2 vertices.
- A connected simple graph in which every edge is a cut edge.
- A connected simple graph with *n* vertices and *n −* 1 edges.
- A connected simple graph with no cycle.

G is a finite graph

(10 pts) Let T be a spanning tree of G, $e \in E(T)$, and $f \in E(G) - E(T)$. Let $P \subset T$ be the unique path connecting the ends of f, and $e \in P$. Show that $T - e + f$ is a spanning tree.

(ii) (10 pts) Given two distinct cycles $C, D \subset G$, and an edge $e \in C \cap D$. Show that $C \cup D - e$ contains a cycle.

Algorithm

Kruskal's Algorithm

Aim: Find a minimum-cost tree Greedy approach

- Maintain a "forest," or a group of trees /disjoint sets
- Iteratively select cheapest edge in graph
	- If adding the edge forms a cycle, don't add it
	- Otherwise, add it to the forest
- Continue until all vertices are part of the same set

Dijkstra's Algorithm

Aim: shortest path spanning tree for a certain vertex Greedy Approach

-
- Separate vertices into two groups:
	- "Innies": vertices that are present in your partial spenning tree at any point in time
	- "Outies" : the other vertices
- Iteratively add **nearest outie**, converting to an innies

Given the following weighted graph $G\!\!$:

- Find a minimum-weight spanning tree using Kruskal's Algorithm
- Given the root vertex a, find a shortest path spanning tree using Dijkstra's Algorithm

Outline

- Master Theorem
- Partial order
- Graph theory
	- Connectivity
	- Bipartition
	- Matching
		- Hall's Theorem
		- Kőnig-Egerváry Theorem
	- Tree
	- algorithm
- Number Theory
	- Divisibility
	- Modular Arithmetic
	- RSA
- Group Theory
	- Cyclic Group
	- Symmetric Group
	- Homomorphism

Divisibility

Definition

Let $n, d \in \mathbb{Z}$ with $d \neq 0$, we say that d divides n, denoted by $d | n$, if $n = dk$, for some $k \in \mathbb{Z}$, i.e.,

 $d \mid n \Leftrightarrow (\exists k \in \mathbb{Z})(n = dk)$

By convention, $0 \mid n$ only if $n = 0$.

- *a* | *a* (**reflexive**)
- $a \mid b \land b \mid c \Rightarrow a \mid c$ (transitive)
- $a \mid b \wedge b \mid a \Rightarrow a = \pm b$ (?)

1. ∣ on ℤ: **pre-order** 2. ∣ on ℕ: **partial-order**

Prime Numbers

Definition

A natural number $p \in \mathbb{N}$ is a prime number (or simply, a prime) if $p \ge 2$ and if p is divisible only by itself and 1.

Remark

A natural number $p \in \mathbb{N}$ is a prime number if it has exactly two distinct factors. The set of all primes is sometimes denoted by \mathbb{P} .

Theorem (Unique Factorization)

Every positive integer $n \geq 2$ can be **uniquely** expressed in the form

$$
n=\prod_{i=1}^k p_i^{\alpha_i},\ p_i\in\mathbb{P},\ \alpha_i\in\mathbb{Z}^+
$$

Infinitude of Prime

Exercise 7.2 (4 pts) Show that

- (2 pts) There exist infinitely many primes of the form $3n + 2$, $n \in \mathbb{N}$. $\left(1\right)$
- (ii) (2 pts) There exist infinitely many primes of the form $6n + 5$, $n \in \mathbb{N}$.

Prove that there are infinite primes in form of $3n + 2$. $Q1:$

Suppose that there are only finite of them, and the largest of them is the m-th prime $\mathbf{A}1$: $p_m = 3k + 2$. Consider $N = 3p_1p_2 \cdots p_m + 2$, it is not divisible by any primes among $p_1, p_2, \ldots p_m$, so all the prime factor of N is in the form of $3n + 1$. But all the $3n + 1$ form primes times up would give a number in the form of $3n + 2$ like N, contradiction.

Greatest Common Divisor

Definition

Let $a, b \in \mathbb{Z} \setminus \{0\}$, The greatest common divisor of a and b, denoted by $gcd(a, b)$, is the greatest positive integer d such that d a \wedge d|b.

Notice that $(\mathbb{N}, |, \wedge := \text{gcd}, \vee := (a, b) \mapsto \frac{ab}{\text{gcd}(a, b)}$ is a lattice where $\top = 0$ and $\bot = 1$.

How to calculate? ① 1. **Euclidean Algorithm** ② 2. Factorization

Exercise: Find solution for $111x - 321y = 75$

Exercise

Let F_n be Fermat Primes, $F_n = 2^{2^n}$ + 1**.** Prove that they are pairwise **coprime**, namely $gcd(F_n, F_m) = 1$.

Motivation: everything starts from division!

$$
F_n = k \cdot F_{n-1} + r \Rightarrow F_n = 2^{2^n} - 1 + 2 = F_{n-1} \cdot (2^{2^{n-1}} + 1) + 2
$$

gcd $(F_n, F_{n-1}) = (F_{n-1}, 2) = 1$

But actually:

$$
F_n - 2 = (2^{2^{n-1}} + 1) \cdot (2^{2^{n-2}} + 1) \cdots
$$

Modular Arithmetic

Definition

Given $a, b \in \mathbb{Z}$, a and b are said to be congruent modulo n, i.e.,

 $a \equiv b \pmod{n}$

if $n | b - a$, i.e., $b = a + nk$ for some $k \in \mathbb{Z}$.

Remark

This is an equivalence relation. The equivalence classes are called *congruence* We can do "arithmetic" in $\mathbb{Z}/n\mathbb{Z}$, e.g.,

$$
\overline{a} + \overline{b} = \overline{a+b}
$$

$$
\overline{a} \cdot \overline{b} = \overline{a \cdot b}
$$

which are well-defined.

2.1.44. Theorem. Let $a \in \mathbb{Z}_+$ and $m \in \mathbb{N} \setminus \{0,1\}$. If $gcd(a, m) = 1$, the inverse of a modulo m exists. This inverse is unique modulo m.

Arithmetic Functions

A function $f : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ is **multiplicative** if $f(1) = 1$ and $f(m_1m_2) = f(m_1)f(m_2)$ for gcd $(m_1, m_2) = 1$.

Theorem

The Euler's Totient Function φ is multiplicative.

This is a consequence of the following more general fact.

Euler's Totient Function The Euler's Totient Function, or the Euler phi function, denoted $\varphi(n)$ or $\phi(n)$ counts the number of positive integers less than n and relatively prime to $n, i.e.$

 $\varphi(n) = |\{k \in \mathbb{N} \mid \gcd(k, n) = 1, 1 \leq k \leq n\}|$

Properties of Euler's Function

$$
\varphi(p) = p - 1
$$

\n
$$
\varphi(p^k) = p^k - p^{k-1} (k \ge 1)
$$

\n
$$
\varphi(mn) = \varphi(m) \cdot \varphi(n), \text{ if } \gcd(m, n) = 1
$$

\n
$$
\varphi(a) = \prod_{i=1}^k (p_i - 1) p_i^{\alpha_i - 1}
$$

\n
$$
\varphi(a) = a \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_k} \right)
$$

Exercise

Which of following statements are **correct**?

- A. φ is non-decreasing
- B. φ is **multiplicative**
- C. $\varphi(n)$ is even for all $n \in \mathbb{N} \setminus \{0\}$
- D. $\varphi(n)$ is the number of **generators** of the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$

Euler's Theorem

Theorem (Euler) For $m \in \mathbb{N} \setminus \{0\}$ and $a \in \mathbb{Z}$ such that $gcd(a, m) = 1$, $a^{\varphi(m)} \equiv 1 \pmod{m}$

where $\varphi(m)$ is the number of invertible integers modulo m.

Theorem (Fermat-I) Given $a \in \mathbb{Z}$ and $p \in \mathbb{P}$, such that $(a, p) = 1$, then $a^{p-1} \equiv 1 \pmod{p}$

Exercise

4. Given $a, n \in \mathbb{N}$ and $a, n > 1$, show that $n | \varphi(a^n - 1)$.

Solution 1:

Let $m = a^n - 1$, consider the multiplicative group $G = (\mathbb{Z}/m\mathbb{Z})^{\times}$. First we prove the order of a is n. Indeed, $a^n \equiv 1 \pmod{m}$ and $a^x \not\equiv 1 \pmod{m}$ for $1 < x < m$ since $1 < a^x < a^n = m$. According to Lagrange's theorem, therefore the order of a divides the

order of G, that is, $n | \varphi(a^n - 1)$.

Solution 2:

$$
m = an - 1 \Rightarrow an \equiv 1 \pmod{m}
$$

Euler $\Rightarrow a\varphi(m) \equiv 1 \pmod{m}$ $\Rightarrow n | \varphi(m) \pmod{m}$

Fermat Primality Test

Fermat Primality Test

Given $n \in \mathbb{N}$, calculate 2^n (mod *n*),

- If $2^n \neq 2 \pmod{n}$, then *n* is COMPOSITE.
- If $2^n \equiv 2 \pmod{n}$, then *n* is PROBABLY prime. (Try other numbers next.)

Such test is called *probabilistic test*.

Fast Modular Exponentiation

Example: Test if 35 is prime. Note that $35 = (100011)_2 = 2^5 + 2^1 + 2^0$, then

$$
2^{35}=2^{32}\times 2^2\times 2^1
$$

Chinese Remainder Theorem

General Form Given $x \equiv a_i \pmod{m_i}$, $i = 1, \ldots, r, a_1, \ldots, a_r \in \mathbb{Z}$, and m_1, \ldots, m_r are pairwise relatively prime. The unique solution is given by

 $x = a_1y_1 + a_2y_2 + \cdots + a_ry_r$ (mod *m*)

where $m = m_1 \cdots m_r$ and $y_i = \delta_{ij}$ (mod m_j), e.g., $y_i = (m/m_i)^{\varphi(m_i)}$.

Exercise $6(10 \text{ points})$ Solve the following system of linear Diophantine equations,

 $x \equiv 3 \pmod{8}$, $x \equiv 1 \pmod{15}$, $x \equiv 11 \pmod{20}$

Chinese Remainder Theorem

RSA Cryptography!

 \blacktriangleright The **public key** to be published is a pair of positive integers $(n := pq, E)$ where $p, q \in \mathbb{P}$ and $p \neq q$, and $E < \varphi(n)$, $gcd(E, \varphi(n)).$

 \blacktriangleright The encryption function is

$$
y = e(x) := x^E \mod n
$$

The private key $D := E^{-1} \mod \varphi(n)$. The decryption function is therefore

$$
d(y) := y^D = x^{ED} = x \mod n
$$

RSA Cryptography!

In an RSA procedure, the **public key** is chosen as (n, E) = (2077, 97), i.e., the encryption function e is given by $e(x) = x^{97} \pmod{2077}$

Note: $2077 = 31 \times 67$

1. Compute private key $D = E^{-1} \pmod{\varphi(n)}$ A: -347(1633) 2. Decrypt the message 279: find $x, y = e(x) \equiv 279 \pmod{2077} \Leftrightarrow x = 279^D$ A: 1984

Group Theory

Definition

A group is a pair (G, \cdot) , where G is a set, and $\cdot : G \times G \rightarrow G$, $(g, h) \mapsto g \cdot h = gh$, is a law of composition (aka group law) that has the following properties:

- The law of composition is associative: $(ab)c = a(bc)$ for all $a, b, c \in G$.
- G contains an identity element 1, such that $1a = a1 = a$ for all $a \in G$.
- Every element $a \in G$ has an inverse, an element b such that $ab = ba = 1$.

An abelian group is a group whose law of composition is commutative.

Definition

A subset H of a group G is a subgroup if it has the following properties:

- ► Closure: If $a, b \in H$, then $ab \in H$.
- \blacktriangleright Identity: $1 \in H$.
- Inverses: If $a \in H$, then $a^{-1} \in H$.

Exercise

Given a group G, for $a, b \in G$, let $a \sim b$ if and only if there exists $g \in G$ such that $b = gag^{-1}$ (conjugate of a by g). Show that ∼ is an **equivalence relation**.

Solution:

- Reflexivity: For all $x \in G$, $x = exe^{-1}$. Thus $x \sim x$ for all $x \in G$.
- Symmetry: Let $x \sim y$ for $x, y \in G$. So $\exists g \in G$ such that $y = gxg^{-1}$. Therefore $\exists q^{-1}$ such that $x = q^{-1}yq$, i.e., $y \sim x$.
- Transitivity: Let $x \sim y$ and $y \sim z$ for $x, y, z \in G$. So $\exists g, h \in G$ such that $y = q x q^{-1}$ and $z = hyh^{-1}$. Therefore $\exists hg \in G$ such that $z = h q x q^{-1} h^{-1}$ $(hg)x(hg)^{-1}$, so $x \sim z$.

Cyclic Group

A group is cyclic if it can be generated by a single element. The cyclic subgroup generated by g is

$$
\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \}.
$$

Let G be a group, $g \in G$. The order of g is the smallest natural integer *n* such that $g^n = 1$. If there is no positive integer *n* such that $g^n = 1$, then g has infinite order.

A group G is cyclic if $G = \langle g \rangle$ for some $g \in G$. g is a generator of $\langle g \rangle$.

Exercise

Given a group G, for $a, b \in G$, $a \sim b$ if and only if there exists $g \in G$ such that $b = gag^{-1}$ (conjugate of a by g). Given that ∼ is an **equivalence relation**, find the **partition** of cyclic group C_4 by \sim .

Suppose $C_4 = \langle x \rangle = \{e, x, x^2, x^3\}$, then the partition is given by $\{\{e\}, \{x\}, \{x^2\}, \{x^3\}\}\$

Symmetric Group

Symmetric Group S_n

Given $n \in \mathbb{N} \setminus \{0\}$, we have the following symmetric group of degree n,

$$
S_n = \{ \text{All permutations on } n \text{ letters/numbers} \}
$$

= Sym{1, 2, 3, ..., n}
= {f : [n] \rightarrow [n] | f bijective}

Note that it is a finite group of *order* n!, i.e., $|S_n| = n!$.

Alternating Group

A permutation of the form (ab) where $a \neq b$ is called a transposition.

A permutation that can be expressed as a product of an even/odd number of **transpositions** is called an even/odd permutation.

The set of even permutations in S_n forms a subgroup of S_n , denoted A_n , is called the alternating group of degree n. $|A_n| = n!/2$ for $n > 1$.

Exercise

Given a group G, for $a, b \in G$, $a \sim b$ if and only if there exists $g \in G$ such that $b = gag^{-1}$ (conjugate of a by g). Given that ∼ is an **equivalence relation**, find the **partition** of A_4 by \sim .

Solution: Using cycle notation, the partition is given by

 $\{\{1\},\$ $\{(12)(34), (13)(24), (14)(23)\},\$ $\{(123), (243), (134), (142)\},\$ $\{(132), (234), (143), (124)\}\$

Homomorphism

Definition Given groups G, G' , a homomorphism is a map $f : G \rightarrow G'$ such that for all $x, y \in G$, $f(xy) = f(x)f(y)$

Theorem Let $f: G \rightarrow G'$ be a group homomorphism, then If $a_1, \ldots, a_k \in G$, then $f(a_1 \cdots a_k) = f(a_1) \cdots f(a_k)$. \blacktriangleright $f(1_G) = 1_{G'}$. • $f(a^{-1}) = f(a)^{-1}$ for $a \in G$.

isomorphism?

Cosets

Definition

Given a group G, if $H \leq G$ is a subgroup and $a \in G$, the notation aH will stand for the set of all products ah with $h \in H$,

 $aH = \{ g \in G \mid g = ah$ for some $h \in H \}$

This set is called a *left coset* of H in G

Definition

The number of *left cosets* of a subgroup is called the *index* of H in G. The index is denoted by $[G : H]$ (which could be infinite if $|G| = \infty$).

Counting formula: $|G| = |H| \cdot [G : H]$. Lagrange's Theorem: Let H be a subgroup of a finite group G . The order of H divides the order of G .

Exercise?

Exercise 6 (10 pts) Let $m, n \in \mathbb{N} \setminus \{0\}$ be coprime, and G a group with $|G| = n$. Show that if $g^m = e$ for $g \in G$, then $g = e$.

Solution: Let $|g| = d$, then by Lagrange's theorem, $g^m = e$ implies that $d | m$. Also by Lagrange's theorem $g | n$. Thus $d | \gcd(m, n)$, i.e., $d | 1$. So $|g| = 1$, that is, $g = e$.

Exercise

\blacksquare Let G, H be finite groups. Which of following statements are **correct**?

- A. If G cyclic and $d \in \mathbb{N} \setminus \{0\}$, the number of elements of order d in G is $\varphi(d)$.
- **B.** If G and H are cyclic groups with $|G| = |H|$, then G and H are **isomorphic**
- **C.** If $H \leq G$ and $a \in G$ then $|aH| = |Ha|$
- D. If $H \leq G$ and $a, b \in G$, then either $aH = Hb$ or $aH \cap Hb = \emptyset$

Reference

- Summer 2021 final exam
- Fall 2021 midterm 2 exam
- Spring 2023 final exam
- Kőnig-Egerváry [theorem \(omath.club\)](https://www.omath.club/2022/09/konig-egervary-theorem.html)
- Prof. Cai, Runze. MATH2030J SU 2023 Lecture Slides
- Zhao, Jiayuan. VE203 FA 2021 Recitation Class Exercises.
- Xue, Runze. VE203 FA 2021 Recitation Class Exercises.