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Asymptotic upper bound

Asymptotic lower bound

Asymptotic tight bound

n\n
Stirling approximation:  n! ~ 27rn(—)

Notation
f(n) =0(g(n))

f(n) = Q(g(n))

f(n) = 0(g(n))

e

Formal definition

exist positive constants c and ny such

that

0<f(n) <cg(n)foralln=n,

exist positive constants c and ny such

that

0 <cg(n) <f(n)foralln =n,

exist positive constants c1, c2, and n,

such that

0 <clg(n) <f(n) <c2g(n) foralln = n,

Limit definition
. f (n)>
lim sup| —= | < o
noeo” T (g(n)

ot (55)

The two above



Given f(n) =1 + cos(ntn/2) and g(n) = 1 + sin(rtn/2), then
1 f(n) = O(g(n))
1 g(n) = O(f(n))
1 f(n) = ©(g(n))
1 g(n) = ©(f(n))

Notation Formal definition Limit definition

Asymptotic upper bound | f (n) = O(g(n)) | exist positive constants c and n, such _ f(n)
lim sup|——= | < @
that n—oo g(n)
0<f(n) <cg(n)foralln =n,

Asymptotic lower bound | f(n) = Q(g(n)) | exist positive constants c and n, such . f(n)
liminf{——=)] >0

that N0 g(n)
0 <cg(n) <f(n)foralln=n,

Asymptotic tight bound | f(n) = ©(g(n)) | exist positive constants c1, c2, and n, The two above
such that
0 <clg(n) <f(n) <c2g(n)foralln=>
N



Master Theorem

If T(n) = aT(n/b) + f(n) (for constants a > 1, b > 1), then
1. T(n) = ©(n'°8:2) if f(n) = O(n'°83~%) for some constant = > 0.
2. T(n) = ©(n'°8s21g n) if f(n) = ©(n'°82).
3. T(n) = ©(f(n)), if f(n) = Q(n'°8s3<) for some constant £ > 0, and if
af(n/b) < cf(n) for some constant ¢ < 1 and all sufficiently large n
(regularity condition).

Exercise 5.2 (2 pts) Let a > 1 and b > 1 be constants, and 7'(n) satisfies the recurrence

T(n) =al(n/b)+ f(n)

Show thaf if f(n) = ©(n'°%*1g" n). k > 0. then the recurrence has solution 7'(n) = O(n'% *1g"*1 n). }ssmue n is

integer po




If T(n) = aT(n/b) + f(n) (for constants a > 1, b > 1), then
1. T(n) = ©(n'°8»3) if f(n) = O(n'°8 =) for some constant = > 0.
T(n) = ©(n'“%s21g n) if f(n) = (%),
T(n) = ©(f(n)), if f(n) = Q(n'°8:3+<) for some constant £ > 0, and if

af(n/b) < cf(n) for some constant ¢ < 1 and all sufficiently large n
(regularity condition).

Exercise:
1. T(n) = kT (g) + 0(n2)
2. T(n) = T(v/n) +Ig(n)




Partial Order

-

/Poset (B <

 Reflexive:Vx € P, x < x
 Antisymmetric:Vx,y EP, X< YyAY<X 2X=Y
* Transitive:Vx,y,z€ P, x<ypny<z —>x<12z
(maybe for some x, y no relation between them)
[
+ dichotomy Vx,y €EP (x <yory < x)
(any two elements are comparable)

N

— Linear/Total order 4
M y cover X

+ original order relation kept

U

— Linear extention




Maximal & maximum ?

[ Minimal /maximal: (among those who comparable with it) )
no larger/smaller (may not unique), can’t be extended

The matching
is maximal in G

o
Compare with every element

Minimum/maximum(unique if exist)
. J

The matching M’ is

[ e 4

maximal, maximum,
and perfect in G

» If z € P but #x € P such that z < x, then z is a maximal element.

» If x < z for all x € P, then z is the maximum element.

Definition Definition
A chain Cin P is » A matching M is maximal if there is no matching M’ such that M C M
» maximal if there exists no chain C’ such that C C C". » A matching M is maximum if there is no matching M’ such that
» maximum if for all chain C', |C| £ |C'|. M| < |M].
» A perfect matching is a matching M such that every vertex of G is
Definition incident with an edge in M.

A maximal connected subgraph of G is a subgraph that is connected and is not
contained in any other connected subgraph of G.




Chain & Antichain

Chain: a subset of comparable elements (a complete graph)

Antichain: a subset of incomparable elements

 Maximal: can’t be extended

/{ Exercise ]

Given a finite set S, then

Height: maximum size of chain ] (2% ,%) is a poset, where A < Biiff |A| < |B| for AB cS.
Width: maximum size of antichain [] The width of (2°,€) is at least |S].

|_| The height of (25,2) is at most |S|.

|| The height of (2°,2) is at least [S].

* Maximum: max length

NS




k: least integer that P is a union of k chains _ -

m: size of largest antichain of P m //

Dilworth Theorem: k=m
“dual”: ’

k: least integer that P is a union of k antichains

m: size of largest chain

Mirsky’s Theorem: k=m

Example:
width of the graph on the right?

Given a finite poset, would removing a maximal chain decreases the width of the poset?



Basic Graph Definitions

Loop, parallel, simple graph i ﬂ/ﬁa

 Isomorphism G = H

« Bijection from V(G) -> V(H) that keep the edges HOH

. Equivalence relation

. Complement: w € E(G) iff uv ¢ E(G)

« Complete graph(k,)/Clique: pairwise adjacent, simple graph

« Path(B,): no repeat vertices

« Cycle graph(c,): Path + e, = v,1,

 Induced subgraph: every edge: both ends in the subgraph => edge in subgraph
« Bipartition: V(G) => (A, B), no edge has both endsin A or B



* Relation between Degree & Edge For all finite graph G = (V. E),

* Handshaking lemma ) " deg(v) = 2|E]|
veV
* Exercise:
* In any graph with at least two nodes, there are at least two nodes of the same
degree

* |s it true that a finite graph having exactly two vertices of odd degree must
contain a path from one to the other? Give a proof or a counterexample.

 Theorem: Consider a 6-clique where every edge is colored red or blue. The graph
contains a red triangle or a blue triangle



Connectivity

Path: the vertices can be ordered as v,,v,,...,v, and edges can be ordered as e, e,,...,e,_; that
€ = ViVit1

Walk: a sequence of (not necessarily distinct) vertices vy, v,,..., v, such that v;v;,, € E fori =
1,2,...,k —

« Distinct Vertices => path

« v, = v, => closed

Length: number of edges

Theorem: If there is a walk from u to v, then there is a path from u to v.

Connected: A graph G is connected if for all u, v € V(G), there is a walk from u to v
(intuitively, one can pick up an entire graph by grabbing just one vertex)

G is disconnected iff there is a partition {X,Y } of V(G) such that no edge has an end in X and
anendinY

Each maximal connected piece of a graph is called a connected component



Which of the following statements about graphs are correct?
] C5is self-complementary.

| | P4is self-complementary.

| ] K2,2isinduced in C4.

| | Clisinduced in K5.



Bridge

If the deletion of a edge/vertex v from G causes the number of components to increase,
then v is called a cut edge/vertex

» either e is a cut-edge and comp(G — e) = comp(G) + 1,
» oreis NOT a cut-edge and comp(G — e) = comp(G).

an edge e is a bridge of G if and only if e lies on no cycle of G



Bipartition & Matching

Theorem
: For every graph G, TFAE
Matching:
S (i) G is bipartite.
* Asubset of edges (i) G has no cycle of odd length.
* No common vertices (iii) G has no closed walk of odd length.
Or each node has either zero or one edge incident (iii) G has no induced cycle of odd length.
to it.

The matching

Perfect matching: every vertex of G is incident with is maximal in G

an edge in M.

The matching M" is
maximal, maximum,
and perfect in G




Matching

Hall’s theorem

Let G be a finite bipartite graph with bipartition (A, B).

There exists a matching covering A iff |N(X)| = | X| VX € A (Hall’s condition)

* If X © V(G), the neighbors of Xis N(X) :={v € V(G) \ X | vis adjacent to a vertex in X}
* The edges S C E(G) covers X c V(G) if every x € X is incident to some e € S.

Exercise 7 (10 Marks)

LLet G be a bipartite graph with bipartation (A. B). and G has no isolated vertices. If the
minimum degree of vertices in A is no less than the maximum degree of vertices in B. show
that there exists a matching covering A.



The matching number (i.e., size of a largest matching(edge set)) is equal to
the vertex cover number (i.e., size of a smallest vertex cover) for a bipartite graph.

* Prove that a k-regular bipartite graph has a perfect matching (k>=1)
k-regular: deg(v) = k for all vin V(G)



Definition: /

e simple graphs G and H \

* a map from V(G) to V(H) which takes edges to edges
=> nonedge can be mapped to anything

=> There is an injective homomorphism from G to H (i.e., one that never maps distir
vertices to one vertex) if and only if G is a subgraph of H.

If a homomorphism f: G & H is a bijection whose inverse function is also a graph
homomorphism, then f is a graph isomorphism. This is same as the Definition in slides

If there is a homomorphism G - H and another homomorphism H - G. Are
the maps surjective or injective?



forest: no cycles => comp(G) = |V(G)| - |E(G).
tree: any two of {connected, no cycles, |V(T)| = |[E(T)| + 1}

spanning tree of G = subgraph + tree + contain all vertices

Theorem Theorem:

Let T be a graph with n vertices. TFAE For connected graph with |[V(G)[>2,

« subgraph H is a spanning tree

 Iff His a minimal connected graph with V(T) =V(G)
« Iff H is a maximal subgraph without cycles

(i) T is a tree;
(ii
(ii

) T contains no cycles, and has n — 1 edges;

)
(iv) T is connected, and each edge is a bridge;

)

)

T is connected, and has n — 1 edges;

(v

(Vi

any two vertices of T are connected by exactly one path;

T contains no cycles, but the addition of any new edge creates exactly one
cycle.



Exercise 5 (10 pts) Given a graph (

r. Show that an ml*_:('«
contained in every spanning tree of G.

e F(G) is a l‘ll]‘('ll'_"t‘ iff e is

Which of the following graph is a tree?

| Asimple graph with a unique path between any 2 vertices.
|| A connected simple graph in which every edge is a cut edge.

|| A connected simple graph with n vertices and n - 1 edges.

|| A connected simple graph with no cycle.



G is a finite graph

(10pts) Let T be a spanning tree of G, e € E(T), and f € E(G) — E(T). Let P C T be
the unique path connecting the ends of f, and e € P. Show that 7" — e + f is a spanning
tree.

(ii) (10pts) Given two distinct cycles C, D C GG, and an edge e € C'ND. Show that CUD —e
contains a cycle.



Kruskal’s Algorithm

Aim: Find a minimum-cost tree

Greedy approach

* Maintain a “forest,” or a group of trees /disjoint sets

* lteratively select cheapest edge in graph
 If adding the edge forms a cycle, don’t add it
 Otherwise, add it to the forest

e Continue until all vertices are part of the same set

Dijkstra’s Algorithm

Aim: shortest path spanning tree for a certain vertex

Greedy Approach

* Separate vertices into two groups:
* “Innies”: vertices that are present in your partial spenning tree at any point in time
e “Outies” : the other vertices

* |teratively add , converting to an innies



Given the following weighted eraph G
| ™

* Find a minimum-weight spanning tree using Kruskal’s Algorithm

* Given the root vertex a, find a shortest path spanning tree using Dijkstra’s Algorithm
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Divisibility

Definition
Let n,d € Z with d # 0, we say that d divides n, denoted by d | n, if n = dk,
for some k € Z, i.e.,

d | ne (3k € Z)(n = dk)

By convention, 0 | n only if n = 0.

a (reflexive)
bADb]|c= al c (transitive)
bAbla=a=+b(?)

1.| on Z: pre-order
2.| on N: partial-order

[
Q Q Q



Prime Numbers

Definition
A natural number p € N is a prime number (or simply, a prime) if p > 2 and
if p is divisible only by itself and 1.

Remark
A natural number p € N is a prime number if it has exactly two distinct factors.

The set of all primes is sometimes denoted by P.

Theorem (Unique Factorization)
Every positive integer n > 2 can be uniquely expressed in the form

k
n:Hp?i, pi€P, ajeZ”
i=1



Infinitude of Prime

Exercise 7.2 (4 pts) Show that
(i) (2pts) There exist infinitely many primes of the form 3n + 2, n € N.
(ii) (2pts) There exist infinitely many primes of the form 6n + 5, n € N.

Q1: Prove that there are infinite primes in form of 3n + 2.

A1l: Suppose that there are only finite of them, and the largest of them is the m-th prime
Pm = 3k + 2. Consider N = 3p1ps - - - pm + 2, it is not divisible by any primes among py, po, . . . Pm,
so all the prime factor of N is in the form of 3n + 1. But all the 3n + 1 form primes times up

would give a number in the form of 3n + 2 like N, contradiction.



Greatest Common Divisor

Definition

Let a,b € Z \ {0}, The greatest common divisor of a and b,
denoted by gcd(a, b), is the greatest positive integer d such that
dla A d|b.

Notice that (N, |, A :=gcd,V := (a, b) — gcd( b)) is a lattice
where T =0 and L = 1.

How to calculate? | | |
(1) 1. Euclidean Algorithm Exercise: Find solution for
| 111x — 321y =75

(2) 2. Factorization



Exercise

Let F,, be Fermat Primes, F, = 22" + 1. Prove that they are
pairwise coprime, namely gcd(E,, F,,,) = 1.

Motivation: everything starts from division!
Fo=k-Foi+r=F =22"-142=F,_;- (2% +1) +2

gcd(Fy, Fmq) = (Fp—qp,2) = 1
But actually:

E,—2=(22""4+1)- (22" +1) -~



Modular Arithmetic

Definition
Given a,b € Z, a and b are said to be congruent modulo n, i.e.,

a= b (mod n)

if n| b— a, i.e., b= a+ nk for some k € Z.

Remark
This is an equivalence relation. The equivalence classes are called congruence

We can do “arithmetic” in Z/nZ, e.g.,

a+b

a'~b

at

3 .

o o
|

which are well-defined.

2.1.44. Theorem. Let a€ Z4 and me N\ {0,1}. If gcd(a, m) =1, the
inverse of a modulo m exists. This inverse is unique modulo m.



Arithmetic Functions

A function f : N\ {0} — N\ {0} is multiplicative if f(1) =1 and
f(mimyp) = f(my)f(my) for ged(mq, mp) = 1.

Theorem
The Euler’s Totient Function ¢ is multiplicative.

This is a consequence of the following more general fact.

Euler's Totient Function
The Euler’s Totient Function, or the Euler phi function, denoted ¢(n) or
¢(n) counts the number of positive integers less than n and relatively prime to

o(n) = |{k € N| ged(k, n) = 1,1 < k < n}|



Properties of Euler’s Function
p(p)=p—1
o(p*) =p* —p* "t (k2 1)

@ (mn) =k<p(m) - @(n),ifgcd(m,n) =1

p(a) = H(pi — Dpi?

-



Exercise

O Which of following statements are correct?

A. ¢ Is non-decreasing

B. @ I1s multiplicative

C. p(n)isevenforalln e N\ {0}

D. @(n) is the number of generators of the group (Z/nZ)*



Euler’s Theorem

Theorem (Euler)
For m € N\ {0} and a € Z such that gcd(a, m) =1,

a?(M =1 (mod m)

where p(m) is the number of invertible integers modulo m.

Theorem (Fermat-I)
Given a € Z and p € P, such that (a,p) = 1, then

a1 =1 (mod p)



Exercise

4. Given a,n € N and a, n > 1, show that n | p(a” — 1).

Solution 1:
Let m = a" — 1, consider the multiplicative group G = (Z/mZ)™.
First we prove the order of a is n. Indeed, a” = 1 (mod m) and
a* % 1(mod m) for 1 < x < msince 1 < a*¥ < a" = m.
According to Lagrange’s theorem, therefore the order of a divides the
order of G, that is, n | p(a" — 1).

Solution 2:

m=a"—1= 3"=1(mod m)

Euler = a#(™ = 1 (mod m)

} = n | ¢(m) (why?)



Fermat Primality Test

Fermat Primality Test
Given n € N, calculate 2" (mod n),

» If 27 £ 2 (mod n), then nis COMPOSITE.

» If 2" =2 (mod n), then nis PROBABLY prime. (Try other numbers next.)
Such test is called probabilistic test.

Fast Modular Exponentiation

Example: Test if 35 is prime.
Note that 35 = (100011); = 2° + 21 + 29, then

D% = PRy D2 e 9



Chinese Remainder Theorem

General Form
Given x = a; (mod m;), i=1,...,r, a1,...,a, € Z, and my,..., m, are
pairwise relatively prime. The unique solution is given by

X =aiy1 +ay2+ -+ ay, (mod m)

where m=m; ---m, and y; = J;; (mod m;), e.g., yi = (m/m,-)‘P(’"").

Exercise 6 (10 points)
Solve the following system of linear Diophantine equations,

r=3 (mod8), r=1 (mod 15), r =11 (mod 20)



Chinese Remainder Theorem

Solution: Note that by Chinese remainder’s theorem, the original system is equivalent to

r=3 (mod 8) (12)
z=1 (mod 3) (13)
r=1 (mod5) (14)
z =11 (mod 4) (15)
r=11 (mod 5) (16)

Note that (12) implies (15), and (14) and (16) are the same, hence the original system is
equivalent to

r=3 (mod 8) (17)

z=1 (mod 5) (18)
r=1 (mod 3) (19)




RSA Cryptography!

» The public key to be published is a pair of positive integers

(n:= pq, E) where p,q € P and p # q, and E < ¢(n),
ged(E, ¢(n)).

» The encryption function is
y=¢e(x) :=xF mod n

» The private key D := E-! mod ¢(n). The decryption
function is therefore

d(y) = y? =xP = x mod n



RSA Cryptography!

In an RSA procedure, the public key is chosen as (n, E) =
(2077, 97), i.e., the encryption function e is given by
e(x) = x°”(mod 2077)

Note: 2077 = 31 X 67

1. Compute private key D = E~1 (mod <p(n))
2. Decrypt the message 279:
find x,y = e(x) = 279 (mod 2077) © x = 279°



Group Theory

Definition

A group is a pair (G,-), where G is aset,and - : G x G — G,

(g, h) — g - h=gh, is a law of composition (aka group law) that has the
following properties:

» The law of composition is associative: (ab)c = a(bc) for all a, b, c € G.
» G contains an identity element 1, such that 1a = al = a for all a € G.

» Every element a € G has an inverse, an element b such that ab = ba = 1.
An abelian group is a group whose law of composition is commutative.

Definition

A subset H of a group G is a subgroup if it has the following properties:
» Closure: If a,b € H, then ab € H.
» Identity: 1 € H.
» Inverses: If a € H, then a=1 € H.



Exercise

Given a group G, fora,b € G, let a ~ b if and only if there
exists g € G such thatb = gag~? (conjugate of a by g). Show that
~ is an equivalence relation.

Solution:
e Reflexivity: For all x € G, £ = exe™ . Thus z ~ z for all z € G.

e Symmetry: Let z ~ y for z,y € G. So dg € G such that y = gzg~!. Therefore
dg~! such that z = ¢~ lyg, ie., y ~ 2.

o Transitivity: Let x ~ y and y ~ z for x,y,2 € G. So dg,h € G such that
y = grg ! and z = hyh~!. Therefore Jhg € G such that z = hgrg 'h™! =
(hg)x(hg)™!, so x ~ 2.



Cyclic Group

A group is cyclic if it can be generated by a single element.
The cyclic subgroup generated by g is

(g) ={g" | ke z}.

Let G be a group, g € G. The order of g is the smallest natural
integer n such that g” = 1. If there is no positive integer n such
that g” = 1, then g has infinite order.

A group G is cyclic if G = (g) for some g € G. g is a generator of
(&)



Exercise

Given a group G, fora,b € G, a ~ b if and only if there exists
g € G such that b = gag~! (conjugate of a by g). Given that ~ is an
equivalence relation, find the partition of cyclic group C, by ~.

Suppose C, = (x) = {e, x, x*, x>}, then the partition is given by

{{e} {x} (), {x° 13



Symmetric Group

Symmetric Group S,
Given n € N\ {0}, we have the following symmetric group of degree n,

S, = {All permutations on n letters/numbers}
= Sym{1,2,3,...,n}
= {f : [n] — [n] | f bijective}

Note that it is a finite group of order n!, i.e., |S,| = n!.

1 1
2%2
3 3 =
4 4

D—=3

(G2 I NN GS I NS N S
o B W N =
o B W N =



Alternating Group

A permutation of the form (ab) where a # b is called a
transposition.

A permutation that can be expressed as a product of an even/odd
number of transpositions is called an even/odd permutation.

The set of even permutations in S, forms a subgroup of S,

denoted A,, is called the alternating group of degree n.
|Apl = n!/2 for n > 1.



Exercise

Given a group G, fora,b € G, a ~ b if and only if there exists
g € G such that b = gag~! (conjugate of a by g). Given that ~ is an
equivalence relation, find the partition of A, by ~.

Solution: Using cycle notation, the partition is given by

1}
1(12)(34), (13)(24), (14)(23)},
{(123), (243), (134), (142)},

{(132), (234), (143), (124) }}



Homomorphism

Definition
Given groups G, G’, a homomorphism is a map f : G — G’ such that for all
x,y € G,

f(xy) = f(x)f(y)

Theorem
Let f : G — G’ be a group homomorphism, then

» Ifa,...,ax € G, then f(a;---ax) = f(a1) - f(ak).
» f(lg) = 1g.
> f(al)=f(a) ! foraeG.

isomorphism?



Cosets

Definition
Given a group G, if H < G is a subgroup and a € G, the notation aH will stand
for the set of all products ah with h € H,

aH ={g € G| g = ah for some h € H}

This set is called a left coset of H in G

Definition
The number of left cosets of a subgroup is called the index of H in G. The
index is denoted by [G : H| (which could be infinite if |G| = ).

Counting formula: |G| = |H| - [G : H].
Lagrange's Theorem: Let H be a subgroup of a finite group G.
The order of H divides the order of G.



Exercise?

Exercise 6 (10 pts) Let m,n € N\ {0} be coprime, and G a group with |G| = n. Show that
if g™ = e for g € G, then g =e.

':'“f".i'\""':: (:“":t_":':‘:;‘q”'-"" MO} be coprime, and G group With, [6; . Sl that Exercise 6 (10pts) Let mon ¢ N\ {0} be coprime, and ¢ a group with |G| = n. Show that
e d — e if g™ =cforge G, then g = ¢
ged (mim) = |
ovdes of e O™ 6] =w - Ay e § <e3.9.9 27% o be e [ which by m thoe e
¢ 7 o ’
‘é ]L.‘\ LYY "', "' ) qu
— " ’ o »
W,,« = bt moned o A taprine fo w1 a.-’ ¢ ",f’f
! Llu 3 F”““‘A' | &

" ) w‘qel\)"'
i A vj‘; P 9 J
n Vo

) " = = b'e’ . O 3°r
& >0 4 yuw« (G| 2.

Solution: Let |g| = d, then by Lagrange’s theorem, g™ = e implies that d | m. Also by
Lagrange’s theorem ¢ | n. Thus d | ged(m, n), i.e., d | 1. So |g| = 1, that is, g = e.




Exercise

O Let G, H be finite groups. Which of following statements are
correct?

A. If G cyclicand d € N \{0}, the number of elements of order d in G
isp(d).

B. If G and H are cyclic groups with |G| = |H|, then G and H are
isomorphic

C. fH<Ganda € Gthen|aH| = |Ha|
D. fH< Ganda,b € G, then eitheraH = HboraH N Hb =0
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