VE203 Final Review

Presenter: Yue & Yinchen

2023/7/30

Outline

- Master Theorem
- Partial order
- Graph theory
 - Connectivity
 - Bipartition
 - Matching
 - Hall's Theorem
 - Kőnig-Egerváry Theorem
 - Tree
 - algorithm

- Number Theory
 - Divisibility
 - Modular Arithmetic
 - RSA
- Group Theory
 - Cyclic Group
 - Symmetric Group
 - Homomorphism

Master Theorem - Notation

	Notation	Formal definition	Limit definition
Asymptotic upper bound	f(n) = O(g(n))	exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$	$\lim_{n \to \infty} \sup\left(\frac{f(n)}{g(n)}\right) < \infty$
Asymptotic lower bound	$f(n) = \Omega(g(n))$	exist positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$	$\lim_{n \to \infty} \inf\left(\frac{f(n)}{g(n)}\right) > 0$
Asymptotic tight bound	$f(n) = \Theta(g(n))$	exist positive constants c1, c2, and n_0 such that $0 \le c1g(n) \le f(n) \le c2g(n)$ for all $n \ge n_0$	The two above

Stirling approximation: $n! \sim$

$$\sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Given $f(n) = 1 + \cos(\pi n/2)$ and $g(n) = 1 + \sin(\pi n/2)$, then (Summer 2021) f(n) = O(g(n)) g(n) = O(f(n)) $f(n) = \Theta(g(n))$ $g(n) = \Theta(f(n))$

	Notation	Formal definition	Limit definition
Asymptotic upper bound	f(n) = O(g(n))	exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$	$\lim_{n \to \infty} \sup\left(\frac{f(n)}{g(n)}\right) < \infty$
Asymptotic lower bound	$f(n) = \Omega(g(n))$	exist positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$	$\lim_{n \to \infty} \inf\left(\frac{f(n)}{g(n)}\right) > 0$
Asymptotic tight bound	$f(n) = \Theta(g(n))$	exist positive constants c1, c2, and n_0 such that $0 \le c1g(n) \le f(n) \le c2g(n)$ for all $n \ge n_0$	The two above

Master Theorem

- If T(n) = aT(n/b) + f(n) (for constants $a \ge 1$, b > 1), then
 - 1. $T(n) = \Theta(n^{\log_b a})$ if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - 2. $T(n) = \Theta(n^{\log_b a} \lg n)$ if $f(n) = \Theta(n^{\log_b a})$.
 - 3. $T(n) = \Theta(f(n))$, if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n (regularity condition).

Exercise 5.2 (2 pts) Let $a \ge 1$ and b > 1 be constants, and T(n) satisfies the recurrence

$$T(n) = aT(n/b) + f(n)$$

Show that if $f(n) = \Theta(n^{\log_b a} \lg^k n), k \ge 0$, then the recurrence has solution $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$. Assume n is integer power of b for simplicity.

If T(n) = aT(n/b) + f(n) (for constants $a \ge 1$, b > 1), then 1. $T(n) = \Theta(n^{\log_b a})$ if $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$. 2. $T(n) = \Theta(n^{\log_b a} \lg n)$ if $f(n) = \Theta(n^{\log_b a})$. 3. $T(n) = \Theta(f(n))$, if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n (regularity condition).

Exercise:

- 1. $T(n) = kT\left(\frac{n}{2}\right) + \theta(n^2)$
- 2. $T(n) = T(\sqrt{n}) + \lg(n)$

Partial Order

Poset (P, \leq)

- Reflexive: $\forall x \in P, x \leq x$
- Antisymmetric: $\forall x, y \in P, x \leq y \land y \leq x \rightarrow x = y$
- Transitive: $\forall x, y, z \in P, x \leq y \land y \leq z \rightarrow x \leq z$ (maybe for some x, y no relation between them)

```
+ dichotomy \forall x, y \in P (x \le y \text{ or } y \le x)
(any two elements are comparable)
```

 \Rightarrow Linear/Total order

 $\frac{1}{2}$

- + original order relation kept
- \Rightarrow Linear extention

Maximal & maximum ?

Minimal/maximal: (among those who comparable with it) no larger/smaller (may not unique), can't be extended Compare with every element UNIMIN Minimum/maximum(unique if exist)

- ▶ If $z \in P$ but $\nexists x \in P$ such that z < x, then z is a *maximal element*.
- ▶ If $x \le z$ for all $x \in P$, then z is the *maximum element*.

Definition

A chain C in P is

- ▶ maximal if there exists no chain C' such that $C \subsetneq C'$
- **•** maximum if for all chain C', $|C| \neq |C'|$.

Definition

A maximal connected subgraph of G is a subgraph that is connected and is **not** contained in any other connected subgraph of G.

Definition

- A matching M is maximal if there is no matching M' such that $M \subsetneq M$
- A matching M is maximum if there is no matching M' such that |M| < |M'|.</p>
- A perfect matching is a matching M such that every vertex of G is incident with an edge in M.

Chain & Antichain

Chain: a subset of comparable elements (a complete graph) Antichain: a subset of incomparable elements

- Maximal: can't be extended
- Maximum: max length

Height: maximum size of chain Width: maximum size of antichain

Exercise

```
Given a finite set S, then
```

```
\square (2<sup>S</sup>, ≤) is a poset, where A ≤ B iff |A| ≤ |B| for A,B ⊂ S.
```

```
The width of (2^S, \subset) is at least |S|.
```

```
The height of (2^S, \supset) is at most |S|.
```

```
The height of (2^S, \supset) is at least |S|.
```

Dilworth's Theorem

k: least integer that P is a union of k chains

m: size of largest antichain of P

Dilworth Theorem: k=m

"dual":

k: least integer that P is a union of k antichains

m: size of largest chain

Mirsky's Theorem: k=m

Example:

width of the graph on the right?

Given a finite poset, would removing a maximal chain decreases the width of the poset?

Basic Graph Definitions

- Loop, parallel, simple graph
- Isomorphism $G \cong H$
 - Bijection from V(G) -> V(H) that keep the edges
 - Equivalence relation
- Complement: $uv \in E(\overline{G})$ iff $uv \notin E(G)$.
- Complete graph(K_n)/Clique: pairwise adjacent, simple graph
- Path(P_n): no repeat vertices
- Cycle graph(C_n): Path + $e_n = v_n v_1$
- Induced subgraph: every edge: both ends in the subgraph => edge in subgraph
- Bipartition: V(G) => (A, B), no edge has both ends in A or B

Double Counting

- Relation between Degree & Edge For all finite graph G = (V, E),
- Handshaking lemma
- Exercise:
 - In any graph with at least two nodes, there are at least two nodes of the same degree
 - Is it true that a finite graph having exactly two vertices of odd degree must contain a path from one to the other? Give a proof or a counterexample.
 - Theorem: Consider a 6-clique where every edge is colored red or blue. The graph contains a red triangle or a blue triangle

$$\log(v) = 2|E|$$

Connectivity

Walk: a sequence of (not necessarily distinct) vertices $v_1, v_2, ..., v_k$ such that $v_i v_{i+1} \in E$ for i = 1, 2, ..., k - 1.

- Distinct Vertices => path
- $v_0 = v_n =>$ closed

Length: number of edges

Theorem: If there is a walk from u to v, then there is a path from u to v.

Connected: A graph G is connected if for all $u, v \in V(G)$, there is a walk from u to v

(intuitively, one can pick up an entire graph by grabbing just one vertex)

G is **disconnected** iff there is a partition $\{X,Y\}$ of V(G) such that no edge has an end in X and an end in Y

Each maximal connected piece of a graph is called a connected component

Which of the following statements about graphs are correct?

- C5 is self-complementary.
- *P*4 is self-complementary.
- *K*2,2 is induced in *C*4.
- C1 is induced in K5.

Bridge

If the deletion of a edge/vertex v from G causes the number of components to increase, then v is called a **cut edge**/vertex

- lacktriangleright equation is a cut-edge and comp(G e) = comp(G) + 1;
- or e is NOT a cut-edge and comp(G e) = comp(G).

an edge e is a bridge of G if and only if e lies on no cycle of G

Bipartition & Matching

Matching:

- A subset of edges
- No common vertices

Or each node has either zero or one edge incident to it.

Perfect matching: every vertex of G is incident with an edge in M.

Theorem

For every graph G, TFAE

- (i) G is bipartite.
- (ii) G has no cycle of odd length.
- (iii) G has no closed walk of odd length.
- (iiii) G has no induced cycle of odd length.

Matching

Hall's theorem

Let G be a finite bipartite graph with bipartition (A, B).

There exists a matching covering A iff $|N(X)| \ge |X| \forall X \subseteq A$ (Hall's condition)

- If $X \subset V(G)$, the *neighbors* of X is $N(X) := \{v \in V(G) \setminus X \mid v \text{ is adjacent to a vertex in } X\}$
- The edges $S \subset E(G)$ covers $X \subset V(G)$ if every $x \in X$ is incident to some $e \in S$.

Exercise 7 (10 Marks)

Let G be a bipartite graph with bipartation (A, B), and G has no isolated vertices. If the minimum degree of vertices in A is no less than the maximum degree of vertices in B, show that there exists a matching covering A.

König-Egeváry Theorem

The matching number (i.e., size of a largest matching(edge set)) is equal to the vertex cover number (i.e., size of a smallest vertex cover) for a bipartite graph.

 Prove that a k-regular bipartite graph has a perfect matching (k>=1) k-regular: deg(v) = k for all v in V(G)

Homomorphism

Definition:

- simple graphs G and H
- a map from V(G) to V(H) which takes edges to edges
- => nonedge can be mapped to anything

=> There is an injective homomorphism from G to H (i.e., one that never maps distir vertices to one vertex) if and only if G is a subgraph of H.

If a homomorphism $f : G \rightarrow H$ is a bijection whose inverse function is also a graph homomorphism, then f is a graph isomorphism. This is same as the Definition in slides

If there is a homomorphism $G \rightarrow H$ and another homomorphism $H \rightarrow G$. Are the maps surjective or injective?

Tree

forest: no cycles => comp(G) = |V(G)| - |E(G)|. tree: any two of {connected, no cycles, |V(T)| = |E(T)| + 1} spanning tree of G = subgraph + tree + contain all vertices

Theorem

- Let T be a graph with n vertices. TFAE
- (i) T is a tree;
- (ii) T contains no cycles, and has n 1 edges;
- (iii) T is connected, and has n 1 edges;
- (iv) T is connected, and each edge is a bridge;
- (v) any two vertices of T are connected by exactly one path;
- (vi) T contains no cycles, but the addition of any new edge creates exactly one cycle.

Theorem: For connected graph with |V(G)|>2,

- subgraph H is a spanning tree
- Iff H is a minimal connected graph with V(T) = V(G)
- Iff H is a maximal subgraph without cycles

Exercise 5 (10 pts) Given a graph G. Show that an edge $e \in E(G)$ is a cut-edge iff e is contained in every spanning tree of G.

Which of the following graph is a tree?

- A simple graph with a unique path between any 2 vertices.
- A connected simple graph in which every edge is a cut edge.
- A connected simple graph with n vertices and n 1 edges.
- A connected simple graph with no cycle.

G is a finite graph

(10 pts) Let T be a spanning tree of $G, e \in E(T)$, and $f \in E(G) - E(T)$. Let $P \subset T$ be the unique path connecting the ends of f, and $e \in P$. Show that T - e + f is a spanning tree.

(ii) (10 pts) Given two distinct cycles $C, D \subset G$, and an edge $e \in C \cap D$. Show that $C \cup D - e$ contains a cycle.

Algorithm

Kruskal's Algorithm

Aim: Find a minimum-cost tree

- Greedy approach
- Maintain a "forest," or a group of trees /disjoint sets
- Iteratively select cheapest edge in graph
 - If adding the edge forms a cycle, don't add it
 - Otherwise, add it to the forest
- Continue until all vertices are part of the same set

Dijkstra's Algorithm

Aim: shortest path spanning tree for a certain vertex

Greedy Approach

- Separate vertices into two groups:
 - "Innies": vertices that are present in your partial spenning tree at any point in time
 - "Outies" : the other vertices
- Iteratively add nearest outie, converting to an innies

Given the following weighted graph G:

- Find a minimum-weight spanning tree using Kruskal's Algorithm
- Given the root vertex a, find a shortest path spanning tree using Dijkstra's Algorithm

Outline

- Master Theorem
- Partial order
- Graph theory
 - Connectivity
 - Bipartition
 - Matching
 - Hall's Theorem
 - Kőnig-Egerváry Theorem
 - Tree
 - algorithm

- Number Theory
 - Divisibility
 - Modular Arithmetic
 - RSA
- Group Theory
 - Cyclic Group
 - Symmetric Group
 - Homomorphism

Divisibility

Definition

Let $n, d \in \mathbb{Z}$ with $d \neq 0$, we say that d divides n, denoted by $d \mid n$, if n = dk, for some $k \in \mathbb{Z}$, i.e.,

 $d \mid n \Leftrightarrow (\exists k \in \mathbb{Z})(n = dk)$

By convention, $0 \mid n$ only if n = 0.

- *a* | *a* (reflexive)
- $a \mid b \land b \mid c \Rightarrow a \mid c$ (transitive)
- $a \mid b \land b \mid a \Rightarrow a = \pm b$ (?)

1. | on ℤ: pre-order
 2. | on ℕ: partial-order

Prime Numbers

Definition

A natural number $p \in \mathbb{N}$ is a prime number (or simply, a prime) if $p \ge 2$ and if p is divisible only by itself and 1.

Remark

A natural number $p \in \mathbb{N}$ is a prime number if it has exactly two distinct factors. The set of all primes is sometimes denoted by \mathbb{P} .

Theorem (Unique Factorization)

Every positive integer $n \ge 2$ can be **uniquely** expressed in the form

$$n = \prod_{i=1}^{k} p_i^{\alpha_i}, \ p_i \in \mathbb{P}, \ \alpha_i \in \mathbb{Z}^+$$

Infinitude of Prime

Exercise 7.2 (4 pts) Show that

- (i) (2pts) There exist infinitely many primes of the form 3n + 2, $n \in \mathbb{N}$.
- (ii) (2pts) There exist infinitely many primes of the form 6n + 5, $n \in \mathbb{N}$.

Q1: Prove that there are infinite primes in form of 3n + 2.

A1: Suppose that there are only finite of them, and the largest of them is the m-th prime $p_m = 3k + 2$. Consider $N = 3p_1p_2 \cdots p_m + 2$, it is not divisible by any primes among $p_1, p_2, \ldots p_m$, so all the prime factor of N is in the form of 3n + 1. But all the 3n + 1 form primes times up would give a number in the form of 3n + 2 like N, contradiction.

Greatest Common Divisor

Definition

Let $a, b \in \mathbb{Z} \setminus \{0\}$, The greatest common divisor of a and b, denoted by gcd(a, b), is the greatest positive integer d such that $d|a \wedge d|b$.

Notice that $(\mathbb{N}, |, \wedge := \text{gcd}, \vee := (a, b) \mapsto \frac{ab}{\text{gcd}(a, b)})$ is a lattice where $\top = 0$ and $\bot = 1$.

How to calculate?
1. Euclidean Algorithm
2. Factorization

Exercise: Find solution for 111x - 321y = 75

Exercise

Let F_n be **Fermat Primes**, $F_n = 2^{2^n} + 1$. Prove that they are pairwise **coprime**, namely $gcd(F_n, F_m) = 1$.

Motivation: everything starts from division!

$$F_n = k \cdot F_{n-1} + r \Rightarrow F_n = 2^{2^n} - 1 + 2 = F_{n-1} \cdot (2^{2^{n-1}} + 1) + 2$$
$$gcd(F_n, F_{n-1}) = (F_{n-1}, 2) = 1$$

But actually:

$$F_n - 2 = \left(2^{2^{n-1}} + 1\right) \cdot \left(2^{2^{n-2}} + 1\right) \cdots$$

Modular Arithmetic

Definition

Given $a, b \in \mathbb{Z}$, a and b are said to be *congruent modulo* n, i.e.,

 $a \equiv b \pmod{n}$

if $n \mid b - a$, i.e., b = a + nk for some $k \in \mathbb{Z}$.

Remark

This is an equivalence relation. The equivalence classes are called *congruence* We can do "arithmetic" in $\mathbb{Z}/n\mathbb{Z}$, e.g.,

$$\overline{a} + \overline{b} = \overline{a+b}$$

 $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$

which are well-defined.

2.1.44. Theorem. Let $a \in \mathbb{Z}_+$ and $m \in \mathbb{N} \setminus \{0, 1\}$. If gcd(a, m) = 1, the inverse of *a* modulo *m* exists. This inverse is unique modulo *m*.

Arithmetic Functions

A function $f : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ is *multiplicative* if f(1) = 1 and $f(m_1m_2) = f(m_1)f(m_2)$ for $gcd(m_1, m_2) = 1$.

Theorem

The Euler's Totient Function φ is multiplicative.

This is a consequence of the following more general fact.

Euler's Totient Function The *Euler's Totient Function*, or the *Euler phi function*, denoted $\varphi(n)$ or $\phi(n)$ counts the number of positive integers less than *n* and relatively prime to *n*, i.e.

Properties of Euler's Function

$$\varphi(p) = p - 1$$

$$\varphi(p^k) = p^k - p^{k-1} \ (k \ge 1)$$

$$\varphi(mn) = \varphi(m) \cdot \varphi(n), \text{ if } \gcd(m, n) = 1$$

$$\varphi(a) = \prod_{i=1}^k (p_i - 1) p_i^{\alpha_i - 1}$$

$$\varphi(a) = a \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_k} \right)$$

Exercise

□ Which of following statements are **correct**?

- A. φ is non-decreasing
- *B.* φ is multiplicative
- *C.* $\varphi(n)$ is even for all $n \in \mathbb{N} \setminus \{0\}$
- *D.* $\varphi(n)$ is the number of **generators** of the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$

Euler's Theorem

Theorem (Euler) For $m \in \mathbb{N} \setminus \{0\}$ and $a \in \mathbb{Z}$ such that gcd(a, m) = 1, $a^{\varphi(m)} \equiv 1 \pmod{m}$

where $\varphi(m)$ is the number of invertible integers modulo m.

Theorem (Fermat-I) Given $a \in \mathbb{Z}$ and $p \in \mathbb{P}$, such that (a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$

Exercise

4. Given $a, n \in \mathbb{N}$ and a, n > 1, show that $n \mid \varphi(a^n - 1)$.

Solution 1:

Let $m = a^n - 1$, consider the multiplicative group $G = (\mathbb{Z}/m\mathbb{Z})^{\times}$. First we prove the order of a is n. Indeed, $a^n \equiv 1 \pmod{m}$ and $a^x \not\equiv 1 \pmod{m}$ for 1 < x < m since $1 < a^x < a^n = m$. According to Lagrange's theorem, therefore the order of a divides the

order of G, that is, $n \mid \varphi(a^n - 1)$.

Solution 2:

$$\begin{array}{l} m = a^n - 1 \Rightarrow a^n \equiv 1 \pmod{m} \\ \text{Euler} \Rightarrow a^{\varphi(m)} \equiv 1 \pmod{m} \end{array} \end{array} \Rightarrow n \mid \varphi(m) \pmod{m!}$$

Fermat Primality Test

Fermat Primality Test

Given $n \in \mathbb{N}$, calculate $2^n \pmod{n}$,

- ▶ If $2^n \not\equiv 2 \pmod{n}$, then *n* is COMPOSITE.
- ▶ If $2^n \equiv 2 \pmod{n}$, then *n* is PROBABLY prime. (Try other numbers next.)

Such test is called *probabilistic test*.

Fast Modular Exponentiation

Example: Test if 35 is prime. Note that $35 = (100011)_2 = 2^5 + 2^1 + 2^0$, then

$$2^{35} = 2^{32} \times 2^2 \times 2^1$$

Chinese Remainder Theorem

General Form Given $x \equiv a_i \pmod{m_i}$, $i = 1, ..., r, a_1, ..., a_r \in \mathbb{Z}$, and $m_1, ..., m_r$ are pairwise relatively prime. The unique solution is given by

 $x = a_1y_1 + a_2y_2 + \cdots + a_ry_r \pmod{m}$

where $m = m_1 \cdots m_r$ and $y_i = \delta_{ij} \pmod{m_j}$, e.g., $y_i = (m/m_i)^{\varphi(m_i)}$.

Exercise 6 (10 points) Solve the following system of linear Diophantine equations,

 $x \equiv 3 \pmod{8}, \quad x \equiv 1 \pmod{15}, \quad x \equiv 11 \pmod{20}$

Chinese Remainder Theorem

Solution: Note that by Chinese remainder	's theorem, the original system is equivalent to			
$x \equiv 3$	$\pmod{8}\tag{12}$			
$x \equiv 1$	$\pmod{3}\tag{13}$			
$x \equiv 1$	$\pmod{5}\tag{14}$			
$x \equiv 11$	$\pmod{4} \tag{15}$			
$x \equiv 11$	$\pmod{5} \tag{16}$			
Note that (12) implies (15) , and (14) and (16) are the same, hence the original system is equivalent to				
$x \equiv 3$	$\pmod{8} \tag{17}$			
$x \equiv 1$	$\pmod{5}\tag{18}$			
$x \equiv 1$	$\pmod{3}\tag{19}$			

RSA Cryptography!

The public key to be published is a pair of positive integers (n := pq, E) where p, q ∈ ℙ and p ≠ q, and E < φ(n), gcd(E, φ(n)).

The encryption function is

$$y = e(x) := x^E \mod n$$

► The private key D := E⁻¹ mod φ(n). The decryption function is therefore

$$d(y) := y^D = x^{ED} = x \mod n$$

RSA Cryptography!

In an RSA procedure, the **public key** is chosen as (n, E) = (2077, 97), i.e., the encryption function e is given by $e(x) = x^{97} \pmod{2077}$

Note: $2077 = 31 \times 67$

1. Compute **private key** $D = E^{-1} \pmod{\varphi(n)}$ A: -347(1633) 2. Decrypt the message 279: find $x, y = e(x) \equiv 279 \pmod{2077} \Leftrightarrow x = 279^{D}$ A: 1984

Group Theory

Definition

A group is a pair (G, \cdot) , where G is a set, and $\cdot : G \times G \rightarrow G$, $(g, h) \mapsto g \cdot h = gh$, is a law of composition (aka group law) that has the following properties:

- ▶ The law of composition is associative: (ab)c = a(bc) for all $a, b, c \in G$.
- G contains an identity element 1, such that 1a = a1 = a for all $a \in G$.
- Every element $a \in G$ has an inverse, an element b such that ab = ba = 1.

An abelian group is a group whose law of composition is commutative.

Definition

A subset H of a group G is a subgroup if it has the following properties:

- **Closure:** If $a, b \in H$, then $ab \in H$.
- ldentity: $1 \in H$.
- ▶ Inverses: If $a \in H$, then $a^{-1} \in H$.

Exercise

Given a group G, for $a, b \in G$, let $a \sim b$ if and only if there exists $g \in G$ such that $b = gag^{-1}$ (conjugate of a by g). Show that \sim is an equivalence relation.

Solution:

- Reflexivity: For all $x \in G$, $x = exe^{-1}$. Thus $x \sim x$ for all $x \in G$.
- Symmetry: Let $x \sim y$ for $x, y \in G$. So $\exists g \in G$ such that $y = gxg^{-1}$. Therefore $\exists g^{-1}$ such that $x = g^{-1}yg$, i.e., $y \sim x$.
- Transitivity: Let $x \sim y$ and $y \sim z$ for $x, y, z \in G$. So $\exists g, h \in G$ such that $y = gxg^{-1}$ and $z = hyh^{-1}$. Therefore $\exists hg \in G$ such that $z = hgxg^{-1}h^{-1} = (hg)x(hg)^{-1}$, so $x \sim z$.

Cyclic Group

A group is cyclic if it can be generated by a single element. The cyclic subgroup generated by g is

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \}.$$

Let G be a group, $g \in G$. The order of g is the smallest natural integer n such that $g^n = 1$. If there is no positive integer n such that $g^n = 1$, then g has infinite order.

A group G is cyclic if $G = \langle g \rangle$ for some $g \in G$. g is a generator of $\langle g \rangle$.

Exercise

Given a group G, for $a, b \in G$, $a \sim b$ if and only if there exists $g \in G$ such that $b = gag^{-1}$ (conjugate of a by g). Given that \sim is an equivalence relation, find the partition of cyclic group C_4 by \sim .

Suppose $C_4 = \langle x \rangle = \{e, x, x^2, x^3\}$, then the partition is given by $\{\{e\}, \{x\}, \{x^2\}, \{x^3\}\}$

Symmetric Group

Symmetric Group S_n

Given $n \in \mathbb{N} \setminus \{0\}$, we have the following symmetric group of degree n,

$$S_n = \{ \text{All permutations on } n \text{ letters/numbers} \}$$
$$= \text{Sym}\{1, 2, 3, \dots, n\}$$
$$= \{ f : [n] \rightarrow [n] \mid f \text{ bijective} \}$$

Note that it is a finite group of order n!, i.e., $|S_n| = n!$.

Alternating Group

A permutation of the form (*ab*) where $a \neq b$ is called a **transposition**.

A permutation that can be expressed as a product of an even/odd number of **transpositions** is called an even/odd permutation.

The set of even permutations in S_n forms a subgroup of S_n , denoted A_n , is called the alternating group of degree n. $|A_n| = n!/2$ for n > 1.

Exercise

Given a group G, for $a, b \in G$, $a \sim b$ if and only if there exists $g \in G$ such that $b = gag^{-1}$ (conjugate of a by g). Given that \sim is an equivalence relation, find the partition of A_4 by \sim .

Solution: Using cycle notation, the partition is given by

 $\{\{1\}, \\ \{(12)(34), (13)(24), (14)(23)\}, \\ \{(123), (243), (134), (142)\}, \\ \{(132), (234), (143), (124)\}\}$

Homomorphism

Definition Given groups G, G', a homomorphism is a map $f : G \to G'$ such that for all $x, y \in G$, f(xy) = f(x)f(y)

Theorem Let $f : G \to G'$ be a group homomorphism, then If $a_1, \ldots, a_k \in G$, then $f(a_1 \cdots a_k) = f(a_1) \cdots f(a_k)$. $f(1_G) = 1_{G'}$. $f(a^{-1}) = f(a)^{-1}$ for $a \in G$.

isomorphism?

Cosets

Definition

Given a group G, if $H \le G$ is a subgroup and $a \in G$, the notation aH will stand for the set of all products ah with $h \in H$,

 $aH = \{g \in G \mid g = ah \text{ for some } h \in H\}$

This set is called a *left coset* of H in G

Definition

The number of *left cosets* of a subgroup is called the *index* of *H* in *G*. The index is denoted by [G : H] (which could be infinite if $|G| = \infty$).

Counting formula: $|G| = |H| \cdot [G : H]$. Lagrange's Theorem: Let H be a subgroup of a finite group G. The order of H divides the order of G.

Exercise?

Exercise 6 (10 pts) Let $m, n \in \mathbb{N} \setminus \{0\}$ be coprime, and G a group with |G| = n. Show that if $g^m = e$ for $g \in G$, then g = e.

Solution: Let |g| = d, then by Lagrange's theorem, $g^m = e$ implies that $d \mid m$. Also by Lagrange's theorem $g \mid n$. Thus $d \mid \gcd(m, n)$, i.e., $d \mid 1$. So |g| = 1, that is, g = e.

Exercise

Let G, H be finite groups. Which of following statements are correct?

- A. If G cyclic and $d \in \mathbb{N} \setminus \{0\}$, the number of elements of order d in G is $\varphi(d)$.
- B. If G and H are cyclic groups with |G| = |H|, then G and H are isomorphic
- C. If $H \leq G$ and $a \in G$ then |aH| = |Ha|
- D. If $H \leq G$ and $a, b \in G$, then either aH = Hb or $aH \cap Hb = \emptyset$

Reference

- Summer 2021 final exam
- Fall 2021 midterm 2 exam
- Spring 2023 final exam
- Kőnig-Egerváry theorem (omath.club)
- Prof. Cai, Runze. MATH2030J SU 2023 Lecture Slides
- Zhao, Jiayuan. VE203 FA 2021 Recitation Class Exercises.
- Xue, Runze. VE203 FA 2021 Recitation Class Exercises.